首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using HST and ground-based optical and NIR imaging data, we investigate whether the blue compact dwarf (BCD) galaxy I Zw 18 possesses an extended low-surface brightness (LSB) old stellar population underlying its star-forming (SF) regions. We show that the exponential intensity decrease observed in the filamentary LSB envelope of the BCD out to 18″ (1.3 kpc at the adopted distance of 15 Mpc) is not due to an evolved stellar disc, but rather due to extended ionized gas emission. Broad-band images reveal, after subtraction of nebular line emission, a compact stellar LSB component extending slightly beyond the SF regions. This stellar host, being blue over a radius range of 5 exponential scale lengths and showing little colour contrast to the SF component, differs strikingly from the red LSB host of standard BCDs. This fact, in connection with the blue colours of component I Zw 18 C (see discussion in Papaderos et al. 2002), suggests that most of the stellar mass in I Zw 18 has formed within the last 0.5 Gyr. Furthermore, we show that the exponential intensity fall-off in the filamentary ionized envelope of I Zw 18 is not particular to this system but a common property of the ionized halo of many SF dwarf galaxies on galactocentric distances of several kpc. In the absence of an appreciable underlying stellar background, extended ionized gas emission dominates in the periphery of I Zw 18, superficially resembling an exponential stellar disc on optical surface brightness profiles. The case of I Zw 18 suggests caution in the search of more distant young galaxy candidates. Intense SF activity in the early phase of dwarf galaxy formation may result in an extended ionized gas halo which can be mistaken for an evolved stellar disc by studying only its exponential surface brightness profile. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
We are currently analysing image data for a large sample of blue compact dwarf galaxies (BCDs), obtained in multiple optical broad- and narrow-band filters. We present preliminary results of a multi-band analysis of two typical BCDs, Mrk 5 and I Zw 123, for which surface-brightness profiles, colour profiles, colour maps and Hα equivalent-width maps have been derived. We demonstrate how a combination of these different processing methods allows a separate analysis of the young and old stellar populations with respect to their colours and spatial distributions. By comparing the derived colours with the predictions of evolutionary synthesis models, we estimate ages of the distinct stellar populations. The surface-brightness profiles of Mrk 5 show an exponential decay at large photometric radii, with slopes typically found for BCDs. In the case of the very compact object I Zw 123, the surface-brightness profile of the underlying stellar component can be described either by an exponential or an R 1/4 law. We discuss briefly how noise effects can influence the intrinsic slope of surface brightness profiles at low surface-brightness levels. For compact objects with extended starbursts, the study of the underlying stellar population can thereby be rendered difficult. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

4.
The surface brightness profile in the V band of the Phoenix dwarf galaxy shows two stellar components: an inner one, which contains all the young stars of the galaxy, and an outer one predominantly populated by red stars. Deep color-magnitude diagrams (CMDs), based on Hubble Space Telescope (HST) observations and reaching the oldest turn-offs, are used to analyze the inner and outer stellar components. Results show that, together with an old stellar population, the outer field contains also an intermediate-age population. These results are compatible with a scenario in which star forming regions are shrinking with time (the shrinking scenario). It seems more difficult to support a halo-disk scenario, which would require extended structures populated only by really old stars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We analyzed a sample of 44 candidates for Tidal Dwarf Galaxies(TDGs) previously selected on optical imaging with low resolution spectroscopy. Most of the TDG candidates have the same redshift as the interacting system, 3 of them very likely are low metallicity dwarf galaxies in projection, and 13 show signs of kinematics decoupled from their hosting tidal tail. Subsequent NIR photometry in combination with evolutionary synthesis modeling allows us to derive stellar masses, star formation rates, and the ratio of old to young stars within each TDG candidate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Summary In the last decade, our understanding of early-type galaxies has greatly changed: from rather uninteresting oblate spheroids flattened by rotation to multicomponent stellar systems whose structure, formation mechanisms, and evolution, are far from being understood. This new scenario is mainly the consequence of the huge growth, in quantity and in quality, of kinematical data obtained from high signal to noise spectral data. Rotation curves and velocity dispersion profiles extending out to almost 2 effective radii are now available, together with line asymmetry measurements, for the stellar components of a fairly large sample of galaxies. For a few galaxies, outer halo tracers such as globular clusters and/or planetary nebulae allow to explore the kinematics out at 4 6r e. In this article we focus on these data giving particular emphasis on the most recent results. Reference is given to other review articles complementing the approach presented here.  相似文献   

7.
Using the Sloan Digital Sky Survey Data Release 4 group catalogue of Yang et al., we investigate sizes, concentrations, colour gradients and surface brightness profiles of central and satellite galaxies. We compare central and satellite galaxies at fixed stellar mass, in order to disentangle environmental from stellar mass dependencies. Early- and late-type galaxies are defined according to concentration. We find that at fixed stellar mass, late-type satellite galaxies have smaller radii and larger concentrations than late-type central galaxies. No such differences are found for early-type galaxies. We have also constructed surface brightness and colour profiles for the central and satellite galaxies in our sample. We find that late-type satellite galaxies have a lower surface brightness and redder colours than late-type central galaxies. We show that all observed differences between satellite and central galaxies can be explained by a simple fading model, in which the star formation in the disc decreases over time-scales of 2–3 Gyr after a galaxy becomes a satellite. Processes that induce strong morphological changes (e.g. harassment) and processes that strip the galaxy of its entire interstellar medium need not to be invoked in order to explain the environmental dependencies we find.  相似文献   

8.
The relation between X-ray luminosity and near-infrared (NIR) luminosity for early-type galaxies has been examined. NIR luminosities should provide a superior measure of stellar mass compared to optical luminosities used in previous studies, especially if there is significant star formation or dust present in the galaxies. However, we show that the X-ray–NIR relations are remarkably consistent with the X-ray–optical relations. This indicates that the large scatter of the relations is dominated by scatter in the X-ray properties of early-type galaxies, and is consistent with early-types consisting of old, quiescent stellar populations.
We have investigated scatter in terms of environment, surface brightness profile, Mg2, Hβ, Hγ line strength indices, spectroscopic age and nuclear Hα emission. We found that galaxies with high Mg2 index, low Hβ and Hγ indices or a 'core' profile have a large scatter in L X, whereas galaxies with low Mg2, high Hβ and Hγ indices or 'power-law' profiles generally have   L X < 1041 erg s−1  . There is no clear trend in the scatter with environment or nuclear Hα emission.  相似文献   

9.
10.
We present multicolour images of the hosts of three z  = 2 QSOs previously detected in the R band by our group. The luminosities, colours and sizes of the hosts overlap with those of actively star-forming galaxies in the nearby Universe. Surface brightness radial profiles over the outer resolved areas roughly follow either an r 1/4 or an exponential law. These properties give support to the young host galaxy interpretation of the extended light around QSOs at high redshift. The rest-frame UV and UV–optical colours are inconsistent with the hypothesis of a scattered halo of light from the active nucleus by a simple optically thin scattering process produced by dust or hot electrons. If the UV light is indeed stellar, star formation rates of hundreds of solar masses per year are implied, an order of magnitude larger than in field galaxies at similar redshifts and above. This might indicate that the QSO phenomenon (at least the high-luminosity one) is preferentially accompanied by enhanced galactic activity at high redshifts.  相似文献   

11.
We use Spitzer IRAC 3.6 and 4.5 μm near-infrared data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), optical B, V and I and Two-Micron All-Sky Survey K s-band data to produce mass surface density maps of M81. The IRAC 3.6- and 4.5-μm data, whilst dominated by emission from old stellar populations, are corrected for small-scale contamination by young stars and polycyclic aromatic hydrocarbon emission. The I -band data are used to produce a mass surface density map by a   B − V   colour correction, following the method of Bell and de Jong. We fit a bulge and exponential disc to each mass map, and subtract these components to reveal the non-axisymmetric mass surface density. From the residual mass maps, we are able to extract the amplitude and phase of the density wave, using azimuthal profiles. The response of the gas is observed via dust emission in the 8-μm IRAC band, allowing a comparison between the phase of the stellar density wave and gas shock. The relationship between this angular offset and radius suggests that the spiral structure is reasonably long-lived and allows the position of corotation to be determined.  相似文献   

12.
We use high-quality optical rotation curves of nine low-luminosity disc galaxies to obtain the velocity profiles of the surrounding dark matter haloes. We find that they increase linearly with radius at least out to the edge of the stellar disc, implying that, over the entire stellar region, the density of the dark halo is about constant.
The properties of the mass structure of these haloes are similar to those found for a number of dwarf and low surface brightness galaxies, but provide a more substantial evidence of the discrepancy between the halo mass distribution predicted in the cold dark matter scenario and those actually detected around galaxies. We find that the density law proposed by Burkert reproduces the halo rotation curves, with halo central densities ( ρ 0∼1–4×10−24 g cm−3) and core radii ( r 0∼5–15 kpc) scaling as ρ 0∝ r 0−2/3.  相似文献   

13.
High spatial resolution visible and NIR observations of the bar of NGC 5850, a prototype of double barred spirals, together with visible intermediate and high dispersion spectra along the primary bar, are being used, with the aid of simple stellar population synthesis models, to investigate the mean age and metallicity of the different stellar components of the central part of the galaxy. The determination of stellar ages and metallicities would constrain theoretical scenarios for secondary bar formation and the evolution of barred spirals. Unfortunately, we cannot obtain a good fit with simple stellar populations (SSPs) to the spectral indices, so it can not give us, by now, insight into the mean stellar age and metallicity of the real populations in the central region of the galaxy. These preliminary results show a relatively old primary bar with metallicity about solar, although absolute values must be taken with care. The nucleus has a young stellar component, and is very dusty. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
We study the central (inner few hundred parsecs) stellar populations of four starburst galaxies (NGC 34, 1614, 3310 and 7714) in the near-infrared (NIR), from 0.8 to 2.4 μm, by fitting combinations of stellar population models of various ages and metallicities. The NIR spectra of these galaxies feature many absorption lines. For the first time, we fit simultaneously as much as 15 absorption features in the NIR. The observed spectra are best explained by stellar populations containing a sizable amount (20–56 per cent by mass) of ∼1-Gyr-old stellar population with thermally pulsing asymptotic giant branch stars. We found that the metallicity of the stars which dominates the light is solar. Metallicities substantially different from solar give a worse fit. Though the ages and metallicities we estimate using the NIR spectroscopy are in agreement with values from the literature based on the ultraviolet/optical, we find older ages and a larger age spread. This may be due to the fact that the optical is mostly sensitive to the last episode of star formation, while the NIR better maintains the record of previous stellar generations. Another interesting result is that the reddening estimated from the whole NIR spectrum is considerably lower than that based on emission lines. Finally, we find a good agreement of the free emission-line spectrum with photoionization models, using as input spectral energy distribution the synthetic composite template we derived as best fit.  相似文献   

15.
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss–Hermite coefficients h 3 and h 4) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps.
Here we present data for five nearby early-type galaxies to ∼three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.  相似文献   

16.
Recent spectroscopic observations of galaxies in the Fornax-Cluster reveal nearly unresolved ‘star-like’ objects with red-shifts appropriate to the Fornax-Cluster. These objects have intrinsic sizes of ≈ 100 pc and absolute B-band magnitudes in the range - 14 < MB < -11.5 mag and lower limits for the central surface brightness μB ≥ 23 mag/arcsec2 (Phillipps et al., 2001, Hilker et al., 1999), and so appear to constitute a new population of ultra-compact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar super-clusters (= clusters of star clusters; not to confuse with super stellar clusters (SSC)) by P. Kroupa (1998), which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of super-clusters in a tidal field. The YMCs merge on a few super-cluster crossing times. Super-clusters that are initially as concentrated and massive as Knot S in the interacting Antennae galaxies (Whitmore et al., 1999) evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
We present Galaxy Evolution Explorer ( GALEX ) far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of the nearby early-type galaxy NGC 2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2 kpc, with suggestions of another partial ring at an even larger radius. Blue FUV–NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outwards, suggesting young stellar populations (≲1 Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1 per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9 kpc, respectively), as traced by [O  iii ] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of  78 ± 6  km s−1 kpc−1, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC 2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC 2974 as an E4 elliptical.  相似文献   

18.
We present William Herschel Telescope spectropolarimetry observations of a complete RA-limited sample of nine low-redshift  (0.05< z <0.2)  3CR radio sources in order to investigate the nature of the ultraviolet (UV) excess in nearby powerful radio galaxies. Of the nine galaxies studied in detail from this sample, we find that four show a measurable UV excess following nebular continuum subtraction, but none of the sources shows significant polarization in the UV. One of the radio galaxies with a UV excess – 3C 184.1 – shows evidence for broad permitted lines and hence direct active galactic nucleus (AGN) light. In the remaining three galaxies we argue that the most likely contributor to the UV excess is a young stellar component. For these three galaxies we find that the best-fitting model for the optical/UV continuum consists of a combination of an old stellar population  (10–15 Gyr  old elliptical galaxy) plus a reddened young stellar population  (0.05–2 Gyr)  . The reddened young stellar component typically accounts for half of the total flux at 4780 Å, following nebular continuum subtraction, and   E ( B - V )  values of between 0.2 and 0.7 mag are required. However, for the majority of sources in our sample (six out of nine), continuum modelling provides no evidence for a significant young stellar component in the nuclear regions of the host galaxies. Our results are discussed in the context of far-infrared evidence for star formation activity.  相似文献   

19.
In this work we build a detailed dynamic model for an S0 galaxy possibly hosting a central massive dark object (MDO). We show that the photometric profiles and the kinematics along the major and minor axes, including the h 3 and h 4 profiles, imply the presence of a central MDO of mass     i.e. 0.3–2.8 per cent of the mass derived for the stellar spheroidal component. Models without MDO are unable to reproduce the kinematic properties of the inner stars and of the rapidly rotating nuclear gas.
The stellar population consists of an exponential disc (27 per cent of the light) and a diffuse spheroidal component (73 per cent of the light) that cannot be represented by a simple de Vaucouleurs profile at any radius. The M L ratios we found for the stellar components (3.3 and 6.6 respectively) are typical of those of disc and elliptical galaxies.  相似文献   

20.
We investigate the far-infrared (FIR) properties of a sample of blue compact dwarf galaxies (BCDs) observed by AKARI . By utilizing the data at wavelengths of  λ= 65  , 90 and 140 μm, we find that the FIR colours of the BCDs are located at the natural high-temperature extension of those of the Milky Way and the Magellanic Clouds. This implies that the optical properties of dust in BCDs are similar to those in the Milky Way. Indeed, we explain the FIR colours by assuming the same grain optical properties, which may be appropriate for amorphous dust grains, and the same size distribution as those adopted for the Milky Way dust. Since both interstellar radiation field and dust optical depth affect the dust temperature, it is difficult to distinguish which of these two physical properties is responsible for the change of FIR colours. Then, in order to examine if the dust optical depth plays an important role in determining the dust temperature, we investigate the correlation between FIR colour (dust temperature) and dust-to-gas ratio. We find that the dust temperature tends to be high as the dust-to-gas ratio decreases but that this trend cannot be explained by the effect of dust optical depth. Rather, it indicates a correlation between dust-to-gas ratio and interstellar radiation field. Although the metallicity may also play a role in this correlation, we suggest that the dust optical depth could regulate the star formation activities, which govern the interstellar radiation field. We also mention the importance of submillimetre data in tracing the emission from highly shielded low-temperature dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号