首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
Kepler空间计划发现了大量半径小于4 R_⊕(R_⊕为地球半径)的近轨道行星,成为Kepler探测的特色之一,它们对当前的行星形成模型提出了新的挑战.行星与其中心恒星之间的潮汐效应对重塑这类行星的轨道构型具有重要影响.基于各种初始的轨道分布数值模拟了近轨道、低质量行星的潮汐演化,定性地给出了行星最后的轨道分布特征,轨道半长轴和峰值均随着初始的半长轴和偏心率增大而变大.对于初始的平均半长轴在0.1au以内,平均偏心率大于0.25时,数值模拟结果与观测比较接近.潮汐耗散系数、恒星和行星的质量等相关参数对潮汐演化后的半长轴分布影响都比较小.基于数值模拟结果,尝试了揭示低质量行星的形成机制:它们很可能形成于原行星盘的较远处,具有中等的轨道偏心率,后来在原行星盘中经历了Ⅰ类迁移到达目前的轨道,但是这不能排除行星的当地形成机制.  相似文献   

2.
张旭东  周济林 《天文学报》2006,47(2):175-185
最近的多普勒观测表明恒星HD 12661周围存在两颗中等偏心率轨道上运行的行星,内行星的最小质量为2.3木星质量,轨道周期为263.6天;外行星的最小质量为1.57木星质量,轨道周期为1444.5天.该系统的稳定性要求两颗行星处在平运动轨道共振.用数值方法研究了该系统形成初期在恒星气体盘作用下的轨道迁移与稳定性,计算了行星在迁移中被平运动共振俘获的概率.发现这两颗行星目前很可能正处在11:2平运动共振边缘,且运动是混沌的,从而澄清了关于系统目前构形的不同说法,并且很可能在系统形成后行星迁移到目前构形时,气体盘几乎消失了.  相似文献   

3.
Vega的碎片盘在早期的观测中出现特殊结构,这可能是其内部存在潜在的高偏心率行星导致的.但是,近期对Vega的多波段高分辨率观测显示,Vega的碎片盘是一个平滑的盘结构,这虽然不能否定其内部存在行星的假说,但是对其中潜在行星的某些轨道参数提供了限制条件.使用数值模拟的方法对Vega系统的碎片盘和可能存在的行星进行模拟.模拟中碎片盘位于80~120 AU,盘中尘埃尺寸为10~100 μm,轨道偏心率与倾角都非常小.通过多组计算的结果发现,如果Vega系统中不存在行星,那么其碎片盘演化结果与最新的观测结果吻合得较好;如果存在行星,且行星偏心率较大(比如e=0.6)时,那么行星的轨道半长径不能大于60 AU,否则碎片盘会在行星的影响下产生明显的聚集现象.行星与碎片盘的2:1平运动共振是导致碎片盘产生结构的主要原因.  相似文献   

4.
M型恒星(M dwarf)是主序星中质量较小的恒星,也是银河系中数量最多的恒星类型,在其周围形成的行星通常距离主星较近,宜居带也比F、G、K型恒星更靠近主星,更有利于发现系外宜居行星.研究表明, M型恒星周围平均存在2.5颗小质量行星,约为F、 G、 K型恒星的3.5倍,但M型恒星周围巨行星的出现率(occurrence rate)则比F、 G、K型小一个量级.基于M型恒星周围发现的401颗行星的参数开展了统计研究,发现质量越大的行星平均轨道半长径越大.类地行星约占行星总数的74%,且轨道半长径均小于1 au,其中28颗行星具有潜在宜居性.根据行星质量-半径关系,在质量等于4倍地球质量(M⊕)处存在一拐点,除少数几颗行星外,大部分小于该质量的行星可能都是由约65%的硅酸盐和约35%的铁组成,大于该质量的行星半径则随质量增加而迅速增大.约60%的M型恒星周围的行星位于多行星系统且轨道分布紧密,相邻行星轨道在3:2、5:3及2:1等平运动共振位置处存在峰值. M型恒星的多行星系统形成与演化等问题对现今的行星形成理论提出了新挑战.  相似文献   

5.
季江徽  刘林 《天文学报》2005,46(3):282-293
用直接数值积分方法通过模拟不同的行星构型探讨了HD82943行星系统(由两颗共振的巨行星组成)的长期动力演化,同时,还研究了在相空间的轨道运动.在对系统长达107年数值积分中,发现所有的稳定轨道均与2:1共振相关联.典型地,在相同的时标内,两个共振幅角θ1和θ2同时(或其中之一)存在秤动.由于共振幅角在一定范围内的秤动,因而使两颗行星轨道半长径被约束而表现为规则运动模式.另外,利用分析模型(包含了外行星偏心率e2的因素),还讨论了对于不同取值的e2和相对近星点经度θ时,内行星在相空间的运动,并发现2:1轨道共振对于相对较小的e2以及当θ=0°时易于保持.此外,适中的e2将导致系统的两颗行星进入深度共振状态.再者,分析模型和数值计算的结果吻合得很好,两者都揭示了行星系统的2:1共振结构.  相似文献   

6.
共轨运动天体与摄动天体的半长径相同,处于1:1平运动共振中.太阳系内多个行星的特洛伊天体即为处于蝌蚪形轨道的共轨运动天体,其中一些高轨道倾角特洛伊天体的轨道运动与来源仍未被完全理解.利用一个新发展的适用于处理1:1平运动共振的摄动函数展开方式,对三维空间中的共轨运动进行考察,计算不同初始轨道根数情况下共轨轨道的共振中心、共振宽度,分析轨道类型与初始轨道根数的关系.并将分析方法所得结果与数值方法的结果相互比较验证,得到了广阔初始轨道根数空间内共轨运动的全局图景.  相似文献   

7.
偏心率是描述天体运动轨道的重要参数之一, 能够为揭示天体的动力学演化提供重要线索, 进而帮助理解天体形成与演化的过程及背后的物理机制. 随着天文观测技术的不断发展, 人们对于天体运动轨道的研究已经走出太阳系, 包含的系统也从大质量端的恒星系统延伸到了低质量端的行星系统. 聚焦天体轨道偏心率研究, 回顾了目前在恒星系统(包括主序恒星、褐矮星以及致密星)和行星系统(包括太阳系外巨行星以及``超级地球''、``亚海王星''等小质量系外行星)方面取得的进展, 总结了不同尺度结构下偏心率研究的一些共同之处和待解决的问题. 并结合当下和未来的相关天文观测设备和项目, 对未来天体轨道偏心率方面的研究工作进行了展望.  相似文献   

8.
<正>近年来,行星形成理论与行星系统动力学已经成为天文学研究的一个重要领域.随着系外行星探测的不断深入,各种与太阳系相比特征迥异的系外行星系统被发现.大批离恒星极近的行星被发现,它们的周期只有几天,从而会受到强烈的潮汐耗散作用.很多多行星系统中相邻行星的周期比都接近简单整数比,这预示着它们很可能处在平运动共振.行星的轨道面与恒星的赤道面夹角的范围也从太阳系内的行星的(?)7°扩展到0°~180°的整个有效范围,出现了不少逆行的热木星.这些新现象在挑战传统的行星形成理论与行星系统动力学的同时,也为其进一步的完善和发展提供了前所未有的机遇.本文将基于最新的观测数据和统计特征,从行星系统动力学角度出发,将潮汐作用与诸共振相结合,研究行星演化过程中的不同构型.  相似文献   

9.
近地小行星(10302) 1989 ML和(4660) Nereus作为下一代深空探测的候选目标一直备受关注. 在考虑太阳系主要天体的动力学背景下, 通过计算最大Lyapunov指数(MLE)及MEGNO (Mean Exponential Growth factor of Nearby Orbits)指数讨论它们的稳定性. 同时, 对每个小行星, 在其观测误差范围内按多元正态分布各选取1000个克隆粒子, 通过统计分析显示这两个小行星在10万年内可能的运动范围, 给出半长径-偏心率空间中的出现次数分布图, 并统计小行星与地球或其他大行星之间的密近交汇及碰撞的概率. 此外还对这两个小行星的标称轨道进行长期共振、Kozai共振及平运动共振的动力学分析. 综上得出结论, 1989 ML处在平运动共振主导的区域, 发生密近交汇的概率较小, 从而其轨道相对较稳定; 而Nereus处在地球的密近交汇区域, 轨道极不稳定.  相似文献   

10.
本文简要地介绍了目前太阳系外行星系统动力演化的研究现状。我们用数值模拟方法和并从分析的角度研究了GJ 876和HD 82 943。通过分析不同的共面和非共面构型 ,我们发现所有的稳定轨道都和2 :1共振有关 ,此外我们还发现在这两个系统内存在近星点共振—对应了两个行星的近星点经度之差在1 80 0或者 0 0附近秤动。这两种机制对维持行星系统的稳定性起了重要作用。  相似文献   

11.
We carry out simulations to investigate the dynamics of the HD 82943 planetary system with two resonant Jupiter-like planets, and to reveal possible stabilizing mechanism for the system. By following different coplanar configurations in the neighborhood of the best-fit orbits, we find that all the stable cases are involved in the 2:1 mean motion resonance and that the alignment of the periastra of the two planets also plays important part in the secular orbital evolution, indicating that these two kinds of mechanisms could be responsible for the dynamics of the system under study.  相似文献   

12.
In this paper, we study the behavior of a pair of co-orbital planets, both orbiting a central star on the same plane and undergoing tidal interactions. Our goal is to investigate final orbital configurations of the planets, initially involved in the 1/1 mean-motion resonance (MMR), after long-lasting tidal evolution. The study is done in the form of purely numerical simulations of the exact equations of motions accounting for gravitational and tidal forces. The results obtained show that, at least for equal mass planets, the combined effects of the resonant and tidal interactions provoke the orbital instability of the system, often resulting in collision between the planets. We first discuss the case of two hot-super-Earth planets, whose orbital dynamics can be easily understood in the frame of our semi-analytical model of the 1/1 MMR. Systems consisting of two hot-Saturn planets are also briefly discussed.  相似文献   

13.
We present the results of hydrodynamic simulations of Jovian mass protoplanets that form in circumbinary discs. The simulations follow the orbital evolution of the binary plus protoplanet system acting under their mutual gravitational forces, and forces exerted by the viscous circumbinary disc. The evolution involves the clearing of the inner circumbinary disc initially, so that the binary plus protoplanet system orbits within a low density cavity. Continued interaction between disc and protoplanet causes inward migration of the planet towards the inner binary. Subsequent evolution can take three distinct paths: (i) the protoplanet enters the 4 : 1 mean motion resonance with the binary, but is gravitationally scattered through a close encounter with the secondary star; (ii) the protoplanet enters the 4 : 1 mean motion resonance, the resonance breaks, and the planet remains in a stable orbit just outside the resonance; (iii) when the binary has initial eccentricity   e bin≥ 0.2  , the disc becomes eccentric, leading to a stalling of the planet migration, and the formation of a stable circumbinary planet.
These results have implications for a number of issues in the study of extrasolar planets. The ejection of protoplanets in close binary systems provides a source of 'free-floating planets', which have been discovered recently. The formation of a large, tidally truncated cavity may provide an observational signature of circumbinary planets during formation. The existence of protoplanets orbiting stably just outside a mean motion resonance (4 : 1) in the simulations indicate that such sites may harbour planets in binary star systems, and these could potentially be observed. Finally, the formation of stable circumbinary planets in eccentric binary systems indicates that circumbinary planets may not be uncommon.  相似文献   

14.
The planets with a radius &lt; 4 R observed by the Kepler mission exhibit a unique feature, and propose a challenge for current planetary formation models. The tidal effect between a planet and its host star plays an essential role in reconfiguring the final orbits of the short-period planets. In this work, based on various initial Rayleigh distributions of the orbital elements, the final semi-major axis distributions of the planets with a radius &lt; 4 R after suffering tidal evolutions are investigated. Our simulations have qualitatively revealed some statistical properties: the semi-major axis and its peak value all increase with the increase of the initial semi-major axis and eccentricity. For the case that the initial mean semi-major axis is less than 0.1 au and the mean eccentricity is larger than 0.25, the results of numerical simulation are approximately consistent with the observation. In addition, the effects of other parameters, such as the tidal dissipation coefficient, stellar mass and planetary mass, etc., on the final semi-major axis distribution after tidal evolution are all relatively small. Based on the simulation results, we have tried to find some clues for the formation mechanism of low-mass planets. We speculate that these low-mass planets probably form in the far place of protoplanetary disk with a moderate eccentricity via the type I migration, and it is also possible to form in situ.  相似文献   

15.
We study systems of close orbiting planets evolving under the influence of tidal circularization. It is supposed that a commensurability forms through the action of disk induced migration and orbital circularization. After the system enters an inner cavity or the disk disperses the evolution continues under the influence of tides due to the central star which induce orbital circularization. We derive approximate analytic models that describe the evolution away from a general first order resonance that results from tidal circularization in a two planet system and which can be shown to be a direct consequence of the conservation of energy and angular momentum. We consider the situation when the system is initially very close to resonance and also when the system is between resonances. We also perform numerical simulations which confirm these models and then apply them to two and four planet systems chosen to have parameters related to the GJ 581 and HD 10180 systems. We also estimate the tidal dissipation rates through effective quality factors that could result in evolution to observed period ratios within the lifetimes of the systems. Thus the survival of, or degree of departure from, close commensurabilities in observed systems may be indicative of the effectiveness of tidal disipation, a feature which in turn may be related to the internal structure of the planets involved.  相似文献   

16.
Most transiting planets orbit very close to their parent star, causing strong tidal forces between the two bodies. Tidal interaction can modify the dynamics of the system through orbital alignment, circularization, synchronization and orbital decay by exchange of angular moment. Evidence for tidal circularization in close-in giant planet is well known. Here, we review the evidence for excess rotation of the parent stars due to the pull of tidal forces towards spin-orbit synchronization. We find suggestive empirical evidence for such a process in the present sample of transiting planetary systems. The corresponding angular momentum exchange would imply that some planets have spiralled towards their star by substantial amounts since the dissipation of the protoplanetary disc. We suggest that this could quantitatively account for the observed mass–period relation of close-in gas giants. We discuss how this scenario can be further tested and point out some consequences for theoretical studies of tidal interactions and for the detection and confirmation of transiting planets from radial velocity and photometric surveys.  相似文献   

17.
The discovered exoplanetary systems have highly diverse dynamic properties, which differ from those of the Solar System. A single model including planet migration effects and their gravitational interaction is used to investigate the features of dynamic processes that lead to the formation of giant-planet systems with different orbital characteristics. It is shown for a system of four giant planets similar to the Solar System how Type I migration could lead to all the planets being captured into resonant configurations. The resonant motion can continue for a long period of time after the transition to Type II migration and after the dissipation of the gas-and-dust disk. The three-planet system of GJ 876 is used to investigate the migration of the planets inward the orbit of the most massive planet and their capture into low-order resonant configurations under the conditions of Type II migration. A system similar to the exoplanetary system of HD 102272 is used to study the capture into high-order resonances followed by an increase in the orbit’s eccentricity.  相似文献   

18.
According to current observational data, planets of many exoplanetary systems have resonant motion. The formation of resonance configurations is studied within a unified model of planetary migration. Planets in the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser, which are moving in the 2: 1 resonance, could have been captured into this resonance due to both the Type I and II migration with a wide range of parameters. The migration conditions are defined for the formation of HD 45364 and HD 200964 that are in the 3: 2 and 4: 3 first-order resonances, correspondingly. The results obtained for HD 200964 show that planets can be captured in the first-order resonances, when the outer-to-inner orbital period ratios for the planets are less than 3: 2, only if Type I migration rates are large, and the mass of at least one planet is substantially less than the modern masses of the observed giant planets. The formation of the HD 102272, HD 108874, HD 181433 and HD 202206 systems with planets in high-order resonances is considered. The capture into these resonances can be realized with very slow Type II migration. Possible bounds for migration parameters are considered. In particular, it has been found that the capture of HD 108874 into the 4: 1 resonance is possible only if the angle between the plane of planetary orbits and the plane of sky is appreciably less than 90°, i.e., the planetary masses are a few times larger than the minimum values. The capture of HD 202206 into the 5: 1 resonance is possible at low migration rates; however, another mechanism is required to explain the high observed eccentricity of the inner planet (for example, strong gravitational interaction between the planets). Resonant configurations can be disrupted due to the interaction between planets and remaining fragments of the planetesimal disk as, for example, may occur in the three-planet system 47 UMa. The specific orbital features observed for this system are explained.  相似文献   

19.
The Gliese 876 planetary system consists of two Jupiter-like planets having a nearly commensurate 2:1 orbital periods ratio. Because the semimajor axes of the planets are very small (of the order 0.1 au and 0.2 au, respectively), and the eccentricity of the inner companion is ≃0.3, the mutual perturbations are extremely large. However, many authors claim the long-term orbital stability of the system, at least over 500 Myr for initial conditions found by Rivera & Lissauer. Results of investigations of a migration of initially separated planets into the close 2:1 mean motion resonance lock from Lee & Peale also support the conclusion that the system should be stable for the lifetime of the parent star. Initial conditions of the system, found from non-linear N -body fits by Laughlin & Chambers and Rivera & Lissauer, to the radial velocity curve, formally allow for a variety of orbital configurations of the GJ 876 system, e.g. coplanar, with planetary inclinations in the range [≃30°, 90°], and with relative inclinations of orbital planes as high as 80°. Our work is devoted to the stability investigation of the systems originating from the fitted initial conditions. We study neighbourhoods of these initial states in the orbital parameter space. We found estimations of the 2:1 mean motion resonance width and dynamical limitations on the planetary masses. We also obtain a global representation of the domains of the orbital parameters space in which initial conditions leading to stable evolutions can be found. Our results can be useful in localization of the best, stable fits to the observational data. In our investigations we use the MEGNO technique (the Mean Exponential Growth factor of Nearby Orbits) invented by Cincotta & Simó. It allows us to distinguish efficiently and precisely between chaotic and regular behaviour of a planetary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号