首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have observed the region of the Coma cluster at 34.5 MHz with a resolution of 26 arcmin × 40 arcmin. A map of the diffuse halo (Coma C) is presented. The size of the halo is found to be 54 arcmin × 30 arcmin. The position angle is 50° ± 10° and the integrated flux is 60 ± 11 Jy. We have also found an extended source to the south of Coma A. The measured half-power widths of this source are 30 arcmin × 40 arcmin. The position angle is 135° and the integrated flux is ~ 15 Jy at 34.5 MHz. The spectral index in the frequency range 408 to 34.5 MHz is -1.0. It is suggested that this source also belongs to the Coma cluster.  相似文献   

2.
We have observed the large supernova remnant Cygnus Loop at 34.5 MHz with the low frequency radio telescope at Gauribi-danur, India. A radio map of the region with a resolution of 26 arcmin × 40 arcmin (α × δ) is presented. The integrated flux density of the Cygnus Loop at this frequency is 1245 ± 195 Jy. The radio fluxes of different parts of the nebula at this frequency were also measured and used to construct their spectra. It is found that the spectrum of the region associated with the optical nebulosity NGC 6992/5 is not flat at low frequencies, and also exhibits a break at a frequency around 400 MHz. The spectrum of the region associated with NGC 6960 also shows a break but around 1000 MHz, while the spectrum of the region associated with NGC 6974 is straight in the entire frequency range 25 to 5000 MHz. The implication of these results on the basis of existing theories of the origin of radio emission from supernova remnants is discussed.  相似文献   

3.
Radio observational results at 232 MHz and multifrequency studies of supernova remnant (SNR) HB21 are presented. Its integrated flux density at 232 MHz is about 390 ± 30 Jy. Both the integrated spectral index and the spatial variations of spectral index of the remnant were calculated by combining the new map at 232 MHz with previously published maps made at 408, 1420, 2695, and 4750 MHz. The SNR has an integrated spectral index of about α = -0.43(S ν ∝ να) between 232 and 4750 MHz. In general the spectral index varies from –0.5 in southeast and west regions of the remnant to –0.3 in the central region and near the northwest edge. The new data of 232 MHz reveals that there is interaction between the remnant and the surrounding gas along the east edge of the remnant which causes the spectrum flattening at low frequency, while the very good agreement between the structure of X-ray emission and the central flat spectrum area suggests that the existence of thermal emission is the reason of spectrum flattening in the area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We have studied the Vela supernova remnant in the light of the 34.5 MHz observations made with the GEETEE low frequency array. The flux densities of Vela X and YZ at 34.5 MHz are estimated to be 1800 and 3900 Jy respectively. These values, along with those from earlier observations at higher frequencies, imply spectral indices (S∞Να) of-0.16 ± 0.02 for Vela X and -0.53 ± 0.03 for Vela YZ. This situation is further substantiated by the spectral-index distribution over the region obtained between 34.5 and 408 MHz. The spectral-index estimates, along with other known characteristics, strengthen the earlier hypothesis that Vela X is a plerion, while Vela YZ is a typical shell-type supernova remnant. We discuss the implications of this result.  相似文献   

5.
We present the results of a search for the ground-state hyperfine transition of the OH radical near 53 MHz using the National Mesosphere–Stratosphere–Troposphere (MST) Radar Facility at Gadanki, India. The observed position was G48.4−1.4 near the Galactic plane. The OH line is not detected. We place a 3σ upper limit for the line flux density at 39 Jy from our observations. We also did not detect recombination lines (RLs) of carbon, which were within the frequency range of our observations. The 3σ upper limit of 20 Jy obtained for the flux density of carbon RLs, along with observations at 34.5 and 327 MHz, are used to constrain the physical properties of the line-forming region. Our upper limit is consistent with the line emission expected from a partially ionized region with electron temperature, density and path lengths in the range 20–300 K, 0.03–0.3 cm−3 and 0.1–170 pc, respectively.  相似文献   

6.
We present the results of a deep 610-MHz survey of the 1 H XMM–Newton / Chandra survey area with the Giant Metre-wave Radio Telescope. The resulting maps have a resolution of ∼7 arcsec and an rms noise limit of 60 μJy. To a 5σ detection limit of 300 μJy, we detect 223 sources within a survey area of 64 arcmin in diameter. We compute the 610-MHz source counts and compare them to those measured at other radio wavelengths. The well-known flattening of the Euclidean-normalized 1.4-GHz source counts below ∼2 mJy, usually explained by a population of starburst galaxies undergoing luminosity evolution, is seen at 610 MHz. The 610-MHz source counts can be modelled by the same populations that explain the 1.4-GHz source counts, assuming a spectral index of −0.7 for the starburst galaxies and the steep spectrum active galactic nucleus (AGN) population. We find a similar dependence of luminosity evolution on redshift for the starburst galaxies at 610 MHz as is found at 1.4 GHz (i.e.  ' Q '= 2.45+0.3−0.4  ).  相似文献   

7.
New images of the supernova remnant (SNR) G351.7+0.8 are presented based on 21-cm H  i -line emission and continuum emission data from the Southern Galactic Plane Survey. SNR G351.7+0.8 has a flux density of 8.4 ± 0.7 Jy at 1420 MHz. Its spectral index is 0.52 ± 0.25 ( S = v −α) between 1420 and 843 MHz, typical of adiabatically expanding shell-like remnants. H  i observations show structures possibly associated with the SNR in the radial velocity range of −10 to −18 km s−1, and suggest a distance of 13.2 kpc and a radius of 30.7 pc. The estimated Sedov age for G351.7+0.8 is less than  6.8×104 yr  . A young radio pulsar PSR J1721−3532 lies close to SNR G351.7+0.8 on the sky. The new distance and age of G351.7+0.8 and recent proper motion measurements of the pulsar strongly argue against an association between SNR G351.7+0.8 and PSR J1721−3532. There is an unidentified, faint X-ray point source 1RXS J172055.3−353937 which is close to G351.7+0.8. This may be a neutron star potentially associated with G351.7+0.8.  相似文献   

8.
Interplanetary scintillation observations of weak radio sources have been made at a frequency of 102.5 MHz. Sources have been chosen from the Bologna catalogue, with flux densities 0.5 Jy–4.0 Jy at 408 MHz.It has been found that the average scintillation visibility is in agreement with the results of the interferometer observations of Speed and Warwick (1978).A very wide spectral index distribution has been found for weak radio sources at low frequencies, perhaps indicating the presence of a new population of low luminosity, flat spectrum radio sources.  相似文献   

9.
Centaurus B (PKS B1343−601) is one of the brightest and closest radio galaxies, with flux density ∼250 Jy at 408 MHz and redshift 0.01215, but it has not been studied much because of its position (i) close to the Galactic plane (it is also known as G309.6+1.7 and Kes 19) and (ii) in the southern sky. It has recently been suggested as the centre of a highly obscured cluster behind the Galactic plane. We present radio observations made with the Australia Telescope Compact Array and Molonglo Observatory Synthesis Telescope to study the jets and lobes. The total intensity and polarization radio images of the FR I jets are used to determine the jet brightness and width variations, magnetic field structure and fractional polarization. The equipartition pressure calculated along the jets declines rapidly over the first 1 arcmin from the galaxy reaching a constant pressure of 10−13  h −4/7 Pa in the lobes blown in the intracluster medium.  相似文献   

10.
The results of flux pulsar radioemission measurements at meter wavelengths, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value isv m =130±80 MHz. Averaged on many pulsars, the spectral index is negative in the 39–61 MHz frequency range and passes through zero at frequencies of about 100 MHz, becoming positive in the 100–400 MHz frequency range. It was noticed that the spectral index in the 100–400 MHz interval depends upon such pulsar periods as α100−=0.7logp+0.9. Using the spectra, more precise radio luminosities of pulsars have been computed.  相似文献   

11.
We present the wide-field imaging and polarimetry at  ν= 20 GHz  of seven most extended, bright  ( S total≥ 0.50 Jy)  , high-frequency selected radio sources in the southern sky with declinations  δ < −30°  . Accompanying the data are brief reviews of the literature for each source. The results presented here aid in the statistical completeness of the Australia Telescope 20-GHz Survey: the Bright Source Sample. The data are of crucial interest for future cosmic microwave background missions as a collection of information about candidate calibrator sources. We were able to obtain data for seven of the nine sources identified by our selection criteria. We report that Pictor A is thus far the best extragalactic calibrator candidate for the Low Frequency Instrument of the Planck European Space Agency mission due to its high level of integrated polarized flux density  (∼0.50 ± 0.06 Jy)  on a scale of 10 arcmin. Six out of the seven sources have a clearly detected compact radio core in our images, with either a null detection or less than 2 per cent detection of polarized emission from the nuclei. Most sources with detected jets have magnetic field alignments running in a longitudinal configuration, however, PKS 1333−33 exhibits transverse fields and an orthogonal change in field geometry from nucleus to jets.  相似文献   

12.
The Parkes–MIT–NRAO (PMN) radio survey has been used to generate a quasi all-sky study of Galactic Supernova Remnants (SNRs) at a common frequency of 4.85 GHz (λ=6 cm). We present flux densities estimated for the sample of 110 Southern Galactic SNRs (up to δ=−65°) observed with the Parkes 64-m radio telescope and an additional sample of 54 from the Northern PMN (up to δ=+64°) survey undertaken with the Green Bank 43-m (20 SNRs) and 91-m (34 SNRs) radio telescopes. Out of this total sample of 164 selected SNRs (representing 71% of the currently 231 known SNRs in the Green catalogue) we consider 138 to provide reliable estimates of flux density and surface brightness distribution. This sub-sample represents those SNRs which fall within carefully chosen selection criteria which minimises the effects of the known problems in establishing reliable fluxes from the PMN survey data. Our selection criteria are based on a judicious restriction of source angular size and telescope beam together with careful evaluation of fluxes on a case by case basis. Direct comparison of our new fluxes with independent literature values gives excellent overall agreement. This gives confidence in the newly derived PMN fluxes when the selection criteria are respected. We find a sharp drop off in the flux densities for Galactic SNRs beyond 4 Jy and then a fairly flat distribution from 5 to 9 Jy, a slight decline and a further flat distribution from 9 to 20 Jy though the numbers of SNR in each Jy bin are low. We also re-visit the contentious ΣD (radio surface brightness–SNRs diameter) relation to determine a new power law index for a sub-sample of shell type SNRs which yields β=−2.2±0.6. This new evaluation of the ΣD relation, applied to the restricted sample, provides new distance estimates and their Galactic scale height distribution. We find a peak in the SNR distribution between 7–11 kpc with most restricted to ±100 pc Galactic scale height.  相似文献   

13.
We have detected giant pulses from the millisecond pulsar PSR B1937+214 at the lowest frequency of 112 MHz. The observed flux density at the pulse peak is ~40 000 Jy, which exceeds the average level by a factor of 600. Pulses of such intensity occur about once per 300 000 periods. The brightness temperature of the observed giant pulses is T B≈1035 K. We estimated the pulse broadening by interstellar scattering to be τsc=3–10 ms. Based on this estimate and on published high-frequency measurements of this parameter, we determined the frequency dependence of the pulse broadening by scattering: τsc(f)=25 × (f/100)?4.0±02.  相似文献   

14.
Emission (2 cm) from 15 Eunomia was detected on March 27, 1983, using the VLA. At this time, 15 Eunomia was 2.0 AU distant from Earth. A flux density of 687 ± 70 μJy was measured at 14.96 GHz (50-MHz bandwidth). If 246 km is adopted for the diameter, a disk temperature of184 ± 20°K results. This is consistent with a rapidly rotating, black sphere with 15 Eunomia's diameter and distance (171°K).  相似文献   

15.
This paper describes a wide-field survey made at 34.5 MHz using GEETEE,1 the low frequency telescope at Gauribidanur (latitude 13°36′12′′N). This telescope was used in the transit mode and by per forming 1-D synthesis along the north-south direction the entire observable sky was mapped in a single day. This minimized the problems that hinder wide-field low-frequency mapping. This survey covers the declination range of-50° to + 70° (- 33° to +61° without aliasing) and the complete 24 hours of right ascension. The synthesized beam has a resolution of 26′ x 42′ sec (δ- 14°. 1). The sensitivity of the survey is 5 Jy/beam (1σ). Special care has been taken to ensure that the antenna responds to all angular scale structures and is suitable for studies of both point sources and extended objects This telescope is jointly operated by the Indian Institute of Astrophysics, Bangalore and the Roman Research Institute, Bangalore.  相似文献   

16.
17.
Imke de Pater  David E Dunn 《Icarus》2003,163(2):449-455
We observed Jupiter’s synchrotron radiation at frequencies of 15 and 22 GHz using the VLA (Very Large Array) in its most compact configuration (D-array) in March 1991. The spatial brightness distribution of the emission at these high frequencies appears to be very similar to that seen at lower frequencies (5 GHz down to 330 MHz). We measured a total nonthermal flux density at 15 and 22 GHz of 1.5 ± 0.15 Jy and 1.5 ± 0.4 Jy, respectively (both normalized to a geocentric distance of 4.04 AU). These numbers agree well with model spectra of Jupiter’s synchrotron radiation that were obtained by fitting the planet’s nonthermal radio emission between 74 MHz and 8 GHz and suggest a maximum cutoff in electron energies at ∼100 MeV. The degree of linear polarization observed with the VLA is 21.5 ± 1.9% at 15 GHz.  相似文献   

18.
IPS observations with the Big Scanning Array of Lebedev Physical Institute (BSA LPI) radio telescope at the frequency 111 MHz have been monitored since 2006. All the sources, about several hundred daily, with a scintillating flux greater than 0.2 Jy are recorded for 24 hours in the 16 beams of the radio telescope covering a sky strip of 8° declination width. We present some results of IPS observations for the recent period of low solar activity considering a statistical ensemble of scintillating radio sources. The dependences of the averaged over ensemble scintillation index on heliocentric distance are considerably weaker than the dependence expected for a spherically symmetric geometry. The difference is especially pronounced in the year 2008 during the very deep solar activity minimum period. These features are explained by the influence of the heliospheric current sheet that is seen as a strong concentration of turbulent solar wind plasma aligned with the solar equatorial plane. A local maximum of the scintillation index is found in the anti-solar direction. Future prospects of IPS observations using BSA LPI are briefly discussed.  相似文献   

19.
This paper introduces a new program to find high-redshift radio galaxies in the Southern hemisphere through ultrasteep spectrum (USS) selection. We define a sample of 234 USS radio sources with spectral indices α843408≤−1.0 ( S ν∝να) and flux densities S 408≥ 200 mJy in a region of 0.35 sr, chosen by cross-correlating the revised 408 MHz Molonglo Reference Catalogue, the 843 MHz Sydney University Molonglo Sky Survey and the 1400 MHz NRAO VLA Sky Survey in the overlap region −40° < δ < −30°. We present Australia Telescope Compact Array (ATCA) high-resolution 1384 and 2368 MHz radio data for each source, which we use to analyse the morphological, spectral index and polarization properties of our sample. We find that 85 per cent of the sources have observed-frame spectral energy distributions that are straight over the frequency range 408–2368 MHz, and that, on average, sources with smaller angular sizes have slightly steeper spectral indices and lower fractional linear polarization. Fractional polarization is anticorrelated with flux density at both 1400 and 2368 MHz. We also use the ATCA data to determine observed-frame Faraday rotation measures for half of the sample.  相似文献   

20.
Interplanetary scintillation observations of eleven supernova remnants and the pulsar J1939+2134, around which the existence of a supernova remnant remains obscure, were carried out with the largest in the world decameter radio telescope UTR-2 at 20, 25 and 30 MHz to determine if any of them contain compact radio sources with the angular size θ<5″. The sample included the young Galactic remnants and the other powerful SNRs. The interplanetary scintillations of the compact radio source in the Crab Nebula associated with the well-known pulsar J0534+2200 and the pulsar J1939+2134 were observed. Apart from the Crab Nebula, we have not detected a compact radio source in supernova remnants with the angular size θ<5″ and the flux density more than 10 Jy. The observations do not confirm the existence of the low frequency compact source in Cassiopeia A that has remained controversial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号