首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
Abstract— Amoeboid olivine aggregates (AOAs) from the reduced CV chondrites Efremovka, Leoville and Vigarano are irregularly‐shaped objects, up to 5 mm in size, composed of forsteritic olivine (Fa<10) and a refractory, Ca, Al‐rich component. The AOAs are depleted in moderately volatile elements (Mn, Cr, Na, K), Fe, Ni‐metal and sulfides and contain no low‐Ca pyroxene. The refractory component consists of fine‐grained calcium‐aluminum‐rich inclusions (CAIs) composed of Al‐diopside, anorthite (An100), and magnesium‐rich spinel (~1 wt% FeO) or fine‐grained intergrowths of these minerals; secondary nepheline and sodalite are very minor. This indicates that AOAs from the reduced CV chondrites are more pristine than those from the oxidized CV chondrites Allende and Mokoia. Although AOAs from the reduced CV chondrites show evidence for high‐temperature nebular annealing (e.g., forsterite grain boundaries form 120° triple junctions) and possibly a minor degree of melting of Al‐diopside‐anorthite materials, none of the AOAs studied appear to have experienced extensive (>50%) melting. We infer that AOAs are aggregates of high‐temperature nebular condensates, which formed in CAI‐forming regions, and that they were absent from chondrule‐forming regions at the time of chondrule formation. The absence of low‐Ca pyroxene and depletion in moderately volatile elements (Mn, Cr, Na, K) suggest that AOAs were either removed from CAI‐forming regions prior to condensation of these elements and low‐Ca pyroxene or gas‐solid condensation of low‐Ca‐pyroxene was kinetically inhibited.  相似文献   

2.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

3.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

4.
Abstract— Anorthite‐rich chondrules in CR and CH carbonaceous chondrites consist of magnesian low‐Ca pyroxene and forsterite phenocrysts, FeNi‐metal nodules, interstitial anorthite, Al‐Ti‐Cr‐rich low‐Ca and high‐Ca pyroxenes, and crystalline mesostasis composed of silica, anorthite and high‐Ca pyroxene. Three anorthite‐rich chondrules contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, ±Al‐diopside, and ± forsterite. A few chondrules contain regions which are texturally and mineralogically similar to magnesian (type I) chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Anorthite‐rich chondrules in CR and CH chondrites are mineralogically similar to those in CV and CO carbonaceous chondrites, but contain no secondary nepheline, sodalite or ferrosilite. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the anorthite‐rich chondrules suggest that these chondrules could not have been produced by volatilization of the ferromagnesian chondrule precursors or by melting of the refractory materials only. We infer instead that anorthite‐rich chondrules in carbonaceous chondrites formed by melting of the reduced chondrule precursors (olivine, pyroxenes, FeNi‐metal) mixed with the refractory materials, including relic CAIs, composed of anorthite, spinel, high‐Ca pyroxene and forsterite. The observed mineralogical and textural similarities of the anorthite‐rich chondrules in several carbonaceous chondrite groups (CV, CO, CH, CR) may indicate that these chondrules formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated. This may explain the relative enrichment of anorthite‐rich chondrules in 16O compared to typical ferromagnesian chondrules (Russell et al., 2000).  相似文献   

5.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   

6.
Two compound calcium‐aluminum‐rich inclusions (CAIs), 3N from the oxidized CV chondrite Northwest Africa (NWA) 3118 and 33E from the reduced CV chondrite Efremovka, contain ultrarefractory (UR) inclusions. 3N is a forsterite‐bearing type B (FoB) CAI that encloses UR inclusion 3N‐24 composed of Zr,Sc,Y‐rich oxides, Y‐rich perovskite, and Zr,Sc‐rich Al,Ti‐diopside. 33E contains a fluffy type A (FTA) CAI and UR CAI 33E‐1, surrounded by Wark‐Lovering rim layers of spinel, Al‐diopside, and forsterite, and a common forsterite‐rich accretionary rim. 33E‐1 is composed of Zr,Sc,Y‐rich oxides, Y‐rich perovskite, Zr,Sc,Y‐rich pyroxenes (Al,Ti‐diopside, Sc‐rich pyroxene), and gehlenite. 3N‐24’s UR oxides and Zr,Sc‐rich Al,Ti‐diopsides are 16O‐poor (Δ17O approximately ?2‰ to ?5‰). Spinel in 3N‐24 and spinel and Al‐diopside in the FoB CAI are 16O‐rich (Δ17O approximately ?23 ± 2‰). 33E‐1’s UR oxides and Zr,Sc‐rich Al,Ti‐diopsides are 16O‐depleted (Δ17O approximately ?2‰ to ?5‰) vs. Al,Ti‐diopside of the FTA CAI and spinel (Δ17O approximately ?23 ± 2‰), and Wark‐Lovering rim Al,Ti‐diopside (Δ17O approximately ?7‰ to ?19‰). We infer that the inclusions experienced multistage formation in nebular regions with different oxygen‐isotope compositions. 3N‐24 and 33E‐1’s precursors formed by evaporation/condensation above 1600 °C. 3N and 33E’s precursors formed by condensation and melting (3N only) at significantly lower temperatures. 3N‐24 and 3N’s precursors aggregated into a compound object and experienced partial melting and thermal annealing. 33E‐1 and 33E avoided melting prior to and after aggregation. They acquired Wark‐Lovering and common forsterite‐rich accretionary rims, probably by condensation, followed by thermal annealing. We suggest 3N‐24 and 33E‐1 originated in a 16O‐rich gaseous reservoir and subsequently experienced isotope exchange in a 16O‐poor gaseous reservoir. Mechanism and timing of oxygen‐isotope exchange remain unclear.  相似文献   

7.
MnO/FeO ratios in olivine from amoeboid olivine aggregates (AOAs) reflect conditions of nebular condensation and can be used in concert with matrix textures to compare metamorphic conditions in carbonaceous chondrites. LIME (low‐iron, Mn‐enriched) olivine was identified in AOAs from Y‐81020 (CO3.05), Kaba (CV~3.1), and in Y‐86009 (CV3), Y‐86751 (CV3), NWA 1152 (CR/CV3), but was not identified in AOAs from Efremovka (CV3.1–3.4) or Allende (CV>3.6). According to thermodynamic models of nebular condensation, LIME olivine is stable at lower temperatures than Mn‐poor olivine and at low oxygen fugacities (dust enrichment <10× solar). Although this set of samples does not represent a single metamorphic sequence, the higher subtypes tend to have AOA olivine with lower Mn/Fe, suggesting that Mn/Fe decreases during parent body metamorphism. Y‐81020 has the lowest subtype and most forsteritic AOA olivine (Fo>95) in our study, whereas Efremovka AOAs are slightly Fe‐rich (Fo>92). AOA olivines from Kaba are mostly forsteritic, but rare Fe‐rich olivine precipitated from an aqueous fluid. A combination of precipitation of Fe‐rich olivine and diffusion of Fe into primary olivine grains resulted in iron‐rich compositions (Fo97–59) in Allende AOAs. Variations from fine‐grained, nonporous matrix toward higher porosity and coarser lath‐like matrix olivine can be divided into six stages represented by (1) Y‐81020, Efremovka, NWA 1152; (2) Y‐86751 lithology B; (3) Y‐86009; (4) Kaba; (5) Y‐86751 lithology A; (6) Allende. These stages are inferred to represent general degree of metamorphism, although the specific roles of thermally driven grain growth and diffusion versus aqueous dissolution and precipitation remain uncertain.  相似文献   

8.
Abstract— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.  相似文献   

9.
Abstract— Minor element (Ca, Cr, and Mn) concentrations in amoeboid olivine aggregates (AOAs) from primitive chondrites were measured and compared with those predicted by equilibrium condensation in the solar nebula. CaO concentrations in forsterite are low, particularly in porous aggregates. A plausible explanation appears that an equilibrium Ca activity was not maintained during the olivine condensation. CaO and MnO in forsterite are negatively correlated, with CaO being higher in compact aggregates. This suggests that the compact aggregates formed either by a prolonged reheating of the porous aggregates or by condensation and aggregation of forsterite during a very slow cooling in the nebula.  相似文献   

10.
Abstract— Amoeboid olivine aggregates (AOAs) in the LL3.0 Semarkona chondrite have been studied by secondary ion mass spectrometry. The AOAs mainly consist of aggregates of olivine grains with interstitial Al‐Ti‐rich diopside and anorthite. Oxygen‐isotopic compositions of all phases are consistently enriched in 16O, with δ17,18O = ~?50‰. The initial 26Al/27Al ratios are calculated to be 5.6 ± 0.9 (2σ) × 10?5. These values are equivalent to those of AOAs and fine‐grained calcium‐aluminum‐rich inclusions (FGIs) from pristine carbonaceous chondrites. This suggests that AOAs in ordinary chondrites formed in the same 16O‐rich calcium‐aluminum‐rich inclusion (CAI)‐forming region of the solar nebula as AOAs and FGIs in carbonaceous chondrites, and subsequently moved to the accretion region of the ordinary chondrite parent body in the solar nebula.  相似文献   

11.
Abstract— Plagioclase‐rich chondrules (PRCs) in the reduced CV chondrites Efremovka, Leoville, Vigarano and Grosvenor Mountains (GRO) 94329 consist of magnesian low‐Ca pyroxene, Al‐Ti‐Cr‐rich pigeonite and augite, forsterite, anorthitic plagioclase, FeNi‐metal‐sulfide nodules, and crystalline mesostasis composed of silica, anorthitic plagioclase and Al‐Ti‐Cr‐rich augite. The silica grains in the mesostases of the CV PRCs are typically replaced by hedenbergitic pyroxenes, whereas anorthitic plagioclase is replaced by feldspathoids (nepheline and minor sodalite). Some of the PRCs contain regions that are texturally and mineralogically similar to type I chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Several PRCs are surrounded by igneous rims or form independent compound objects. Twelve PRCs contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, high‐Ca pyroxene, ± forsterite, and ± Al‐rich low‐Ca pyroxene. Anorthite of these CAIs is generally more heavily replaced by feldspathoids than anorthitic plagioclase of the host chondrules. This suggests that either the alteration predated formation of the PRCs or that anorthite of the relic CAIs was more susceptible to the alteration than anorthitic plagioclase of the host chondrules. These observations and the presence of igneous rims around PRCs and independent compound PRCs suggest that the CV PRCs may have had a complex, multistage formation history compared to a more simple formation history of the CR PRCs. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the PRCs suggests that these chondrules could not have been produced by volatilization of ferromagnesian chondrule precursors or by melting of refractory materials only. We infer instead that PRCs in carbonaceous chondrites formed by melting of the reduced chondrule precursors (magnesian olivine and pyroxene, FeNi‐metal) mixed with refractory materials (relic CAIs) composed of anorthite, spinel, high‐Ca pyroxene, and forsterite. The mineralogical, chemical and textural similarities of the PRCs in several carbonaceous chondrite groups (CV, CO, CH, CR) and common presence of relic CAIs in these chondrules suggest that PRCs may have formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated.  相似文献   

12.
Abstract— We report detailed chemical, petrological, and mineralogical studies on the Ningqiang carbonaceous chondrite. Ningqiang is a unique ungrouped type 3 carbonaceous chondrite. Its bulk composition is similar to that of CV and CK chondrites, but refractory lithophile elements (1.01 × CI) are distinctly depleted relative to CV (1.29 × CI) and CK (1.20 × CI) chondrites. Ningqiang consists of 47.5 vol% chondrules, 2.0 vol% Ca,Al‐rich inclusions (CAIs), 4.5 vol% amoeboid olivine aggregates (AOAs), and 46.0 vol% matrix. Most chondrules (95%) in Ningqiang are Mg‐rich. The abundances of Fe‐rich and Al‐rich chondrules are very low. Al‐rich chondrules (ARCs) in Ningqiang are composed mainly of olivine, plagioclase, spinel, and pyroxenes. In ARCs, spinel and plagioclase are enriched in moderately volatile elements (Cr, Mn, and Na), and low‐Ca pyroxenes are enriched in refractory elements (Al and Ti). The petrology and mineralogy of ARCs in Ningqiang indicate that they were formed from hybrid precursors of ferromagnesian chondrules mixed with refractory materials during chondrule formation processes. We found 294 CAIs (55.0% type A, 39.5% spinel‐pyroxene‐rich, 4.4% hibonite‐rich, and several type C and anorthite‐spinel‐rich inclusions) and 73 AOAs in 15 Ningqiang sections (equivalent to 20 cm2surface area). This is the first report of hibonite‐rich inclusions in Ningqiang. They are texturally similar to those in CM, CH, and CB chondrites, and exhibit three textural forms: aggregates of euhedral hibonite single crystals, fine‐grained aggregates of subhedral hibonite with minor spinel, and hibonite ± Al,Ti‐diopside ± spinel spherules. Evidence of secondary alteration is ubiquitous in Ningqiang. Opaque assemblages, formed by secondary alteration of pre‐existing alloys on the parent body, are widespread in chondrules and matrix. On the other hand, nepheline and sodalite, existing in all chondritic components, formed by alkali‐halogen metasomatism in the solar nebula.  相似文献   

13.
Abstract— All groups of chondritic meteorites contain discrete grains of forsteritic olivine with FeO contents below 1 wt% and high concentrations of refractory elements such as Ca, Al, and Ti. Ten such grains (52 to 754 μg) with minor amounts of adhering matrix were separated from the Allende meteorite. After bulk chemical analysis by instrumental neutron activation analysis (INAA), some samples were analyzed with an electron microprobe and some with an ion microprobe. Matrix that accreted to the forsterite grains has a well‐defined unique composition, different from average Allende matrix in having higher Cr and lower Ni and Co contents, which implies limited mixing of Allende matrix. All samples have approximately chondritic relative abundances of refractory elements Ca, Al, Sc, and rare‐earth elements (REE), although some of these elements, such as Al, do not quantitatively reside in forsterite; whereas others (e.g., Ca) are intrinsic to forsterite. The chondritic refractory element ratios in bulk samples, the generally high abundance level of refractory elements, and the presence of Ca‐Al‐Ti‐rich glass inclusions suggest a genetic relationship of refractory condensates with forsteritic olivine. The Ca‐Al‐Ti‐rich glasses may have acted as nuclei for forsterite condensation. Arguments are presented that exclude an origin of refractory forsterite by crystallization from melts with compositions characteristic of Allende chondrules: (a) All forsterite grains have CaO contents between 0.5 and 0.7 wt% with no apparent zoning, requiring voluminous parental melts with 18 to 20 wt% CaO, far above the average CaO content of Allende chondrules. Similar arguments apply to Al contents. (b) The low FeO content of refractory forsterite of 0.2‐0.4 wt% imposes an upper limit of ~1 wt% of FeO on the parental melt, too low for ordinary and carbonaceous chondrule melts, (c) The Mn contents of refractory forsterites are between 30 to 40 ppm. This is at least one order of magnitude below the Mn content of chondrule olivines in all classes of meteorites. The observed Mn contents of refractory forsterite are much too low for equilibrium between olivine and melts of chondrule composition, (d) As shown earlier, refractory forsterites have O‐isotopic compositions different from chondrules (Weinbruch et al., 1993a). Refractory olivines in carbonaceous chondrites are found in matrix and in chondrules. The compositional similarity of both types was taken to indicate that all refractory forsterites formed inside chondrules (e.g., Jones, 1992). As refractory forsterite cannot have formed by crystallization from chondrule melts, we conclude that refractory forsterite from chondrules are relic grains that survived chondrule melting and probably formed in the same way as refractory forsterite enclosed in matrix. We favor an origin of refractory forsterite by condensation from an oxidized nebular gas.  相似文献   

14.
Abstract— Recipes are presented for synthesizing various type A and type B Ca‐Al‐rich inclusions (CAIs), refractory volatilization residues, and the minerals forsterite and melilite that are required for experiments. These experiments (described in other works) aim to make two determinations: 1) the conditions under which the surfaces of CAIs were either “flash‐heated” or “volatilized subsolidus” to form a temporary ultra‐refractory residue, and 2) the conditions under which the residue was then metasomatized to form the mineral layers making up Wark‐Lovering (WL) rims on CAIs.  相似文献   

15.
The microstructures and compositions of olivine and refractory components in six amoeboid olivine aggregates (AOAs) in the Allan Hills A77307 CO3.0 chondrite have been characterized in detail using the focused ion beam sample preparation technique with transmission electron microscopy. In the AOAs, refractory components (perovskite, melilite, spinel, anorthite, and Al‐Ti‐bearing diopside) provide evidence of a high degree of textural and compositional heterogeneity, suggesting that these phases have formed by disequilibrium gas–solid condensation at high temperatures under highly dynamic conditions. We infer different possible reactions of early‐condensed solid minerals (perovskite and spinel) with a nebular gas, forming diopside with wide ranges of Al and Ti contents and/or anorthite. The progressive, incomplete consumption of spinel in these reactions may have resulted in the Cr enrichment in the remaining, unreacted spinel in the AOAs. In contrast to the refractory components, olivines in the AOAs have equilibrated textures with 120° triple junctions, indicating that the AOAs were subjected to high‐temperature annealing after agglomeration of olivine and refractory components. Because the AOAs consist of fine‐grained olivine grains with numerous pores, the annealing is constrained by experimental data to have occurred for a short duration of the order of a few hours to tens of hours depending on the annealing temperature. In comparison, the effects of annealing on the refractory components are minimal, probably due to pinning of grain boundaries in the multiphase assemblages that inhibited grain growth.  相似文献   

16.
Abstract— We have measured O‐isotopic ratios in a variety of olivine grains in the CO3 chondrite Allan Hills (ALH) A77307 using secondary ion mass spectrometry in order to study the chondrule formation process and the origin of isolated olivine grains in unequilibrated chondrites. Oxygen‐isotopic ratios of olivines in this chondrite are variable from δ17O = ?15.5 to +4.5% and δ18O = ?11.5 to +3.9%, with Δ17O varying from ?10.4 to +3.5%. Forsteritic olivines, Fa<1, are enriched in 16O relative to the bulk chondrite, whereas more FeO‐rich olivines are more depleted in 16O. Most ratios lie close to the carbonaceous chondrite anhydrous minerals (CCAM) line with negative values of Δ17O, although one grain of composition Fa4 has a mean Δ17O of +1.6%. Marked O‐isotopic heterogeneity within one FeO‐rich chondrule is the result of incorporation of relic, 16O‐rich, Mg‐rich grains into a more 16O‐depleted host. Isolated olivine grains, including isolated forsterites, have similar O‐isotopic ratios to olivine in chondrules of corresponding chemical composition. This is consistent with derivation of isolated olivine from chondrules, as well as the possibility that isolated grains are chondrule precursors. The high 16O in forsteritic olivine is similar to that observed in forsterite in CV and CI chondrites and the ordinary chondrite Julesburg and suggests nebula‐wide processes for the origin of forsterite that appears to be a primitive nebular component.  相似文献   

17.
Abstract– In the scenario developed here, most types of calcium‐aluminum‐rich inclusions (CAIs) formed near the Sun where they developed Wark‐Lovering rims before being transported by aerodynamic forces throughout the nebula. The amount of ambient dust in the nebula varied with heliocentric distance, peaking in the CV–CK formation location. Literature data show that accretionary rims (which occur outside the Wark‐Lovering rims) around CAIs contain substantial 16O‐rich forsterite, suggesting that, at this time, the ambient dust in the nebula consisted largely of 16O‐rich forsterite. Individual sub‐millimeter‐size Compact Type‐A CAIs (each surrounded by a Wark‐Lovering rim) collided in the CV–CK region and stuck together (in a manner similar to that of sibling compound chondrules); the CTAs were mixed with small amounts of 16O‐rich mafic dust and formed centimeter‐size compound objects (large Fluffy Type‐A CAIs) after experiencing minor melting. In contrast to other types of CAIs, centimeter‐size Type‐B CAIs formed directly in the CV–CK region after gehlenite‐rich Compact Type‐A CAIs collided and stuck together, incorporated significant amounts of 16O‐rich forsteritic dust (on the order of 10–15%) and probably some anorthite, and experienced extensive melting and partial evaporation. (Enveloping compound chondrules formed in an analogous manner.) In those cases where appreciably higher amounts of 16O‐rich forsterite (on the order of 25%) (and perhaps minor anorthite and pyroxene) were incorporated into compound Type‐A objects prior to melting, centimeter‐size forsterite‐bearing Type‐B CAIs (B3 inclusions) were produced. Type‐B1 inclusions formed from B2 inclusions that collided with and stuck to melilite‐rich Compact Type‐A CAIs and experienced high‐temperature processing.  相似文献   

18.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   

19.
Abstract— A new grouplet of primitive, metal‐rich chondrites, here called the CB (C, carbonaceous; B, bencubbinite) chondrites, has been recognized. It includes Bencubbin, Weatherford, Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627. Their mineral compositions, as well as their oxygen and nitrogen isotopic compositions, indicate that they are closely related to the CR and CH chondrites, all of which are members of the more inclusive CR clan. CB chondrites have much greater metal/silicate ratios than any other chondrite group, widely increasing the range of metal/silicate fractionation recorded in solar nebular processes. They also have the greatest moderately volatile lithophile element depletions of any chondritic materials. Metal has compositional trends and zoning patterns that suggest a primitive condensation origin, in contrast with metal from other chondrite groups. CB chondrites, as well as other CR clan chondrites, have much heavier nitrogen (higher 15N/14N) than that in other chondrite groups. The primitive characteristics of the CB chondrites suggest that they contain one of the best records of early nebular processes. Another chondrite, Grosvenor Mountains 95551, is petrographically similar to the CB chondrites, but its mineral and oxygen and nitrogen isotope compositions indicate that it formed from a different nebular reservoir.  相似文献   

20.
Abstract— Calcium‐aluminum‐rich refractory inclusions (CAIs) in CR chondrites are rare (<1 vol%), fairly small (<500 μm) and irregularly‐shaped, and most of them are fragmented. Based on the mineralogy and petrography, they can be divided into grossite ± hibonite‐rich, melilite‐rich, and pyroxene‐anorthite‐rich CAIs. Other types of refractory objects include fine‐grained spinel‐melilite‐pyroxene aggregates and amoeboid olivine aggregates (AOAs). Some of the pyroxene‐anorthite‐rich CAIs have igneous textures, and most melilite‐rich CAIs share similarities to both the fluffy and compact type A CAIs found in CV chondrites. One major difference between these CAIs and those in CV, CM, and CO chondrites is that secondary mineral phases are rare. In situ ion microprobe analyses of oxygen‐isotopic compositions of 27 CAIs and AOAs from seven CR chondrites demonstrate that most of the CAIs are 16O‐rich (δ17O of hibonite, melilite, spinel, pyroxene, and anorthite < ?22‰) and isotopically homogeneous within 3–4‰. Likewise, forsterite, spinel, anorthite, and pyroxene in AOAs have nearly identical, 16O‐rich compositions (?24‰ < δ17O < ?20‰). In contrast, objects which show petrographic evidence for extensive melting are not as 16O‐rich (δ17O less than ?18‰). Secondary alteration minerals replacing 16O‐rich melilite in melilite‐rich CAIs plot along the terrestrial fractionation line. Most CR CAIs and AOAs are mineralogically pristine objects that largely escaped thermal metamorphism and secondary alteration processes, which is reflected in their relatively homogeneous 16O‐rich compositions. It is likely that these objects (or their precursors) condensed in an 16O‐rich gaseous reservoir in the solar nebula. In contrast, several igneous CAIs are not very enriched in 16O, probably as a result of their having melted in the presence of a relatively 16O‐poor nebular gas. If the precursors of these CAIs were as 16O‐rich as other CR CAIs, this implies either temporal excursions in the isotopic composition of the gas in the CAI‐forming regions and/or radial transport of some CAI precursors into an 16O‐poor gas. The absence of oxygen isotope heterogeneity in the primary minerals of melilite‐rich CAIs containing alteration products suggests that mineralogical alteration in CR chondrites did not affect oxygen‐isotopic compositions of their CAIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号