首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
在简要阐明参考系、参考架及其历史重大进程的基础上,对几种重要的、最新规范的参考系/参考架(质心天球参考系和地心天球参考系、国际天球参考系、国际地球参考系、太阳系动力学参考系等)的定义、实现和特点作了评述和分析,并对最新规范中与参考系、参考架有关的某些新概念的定义和新模式的应用(自2003年开始贯彻),如:天球中介极(CIP)、天球历书原点(CEO)、地球历书原点(TEO)、地球自转角的新定义、岁差-章动新模式的应用,作了阐述和讨论。  相似文献   

2.
关于天球参考报   总被引:2,自引:0,他引:2  
章动序列计算和地球定向参数测定需要一个中间的天球参考极作参照,1984年,采用IAU1980章动理论,选取天球历书极作为参考极,利用改善岁差章动模型和由天文测地新技术确定地球定向参数实现的天球历书极,其精度可达0.1mas,随着理论和观测精度的提高,在微角秒量级下,章动和极移模型中周日和半周日成分分应被考虑,地球定向参数的高频成分已被测定,因此天球历书极的原先定义不再适用,需要更改,叙述了不同天球参考极的概念,天球历书极的定义,评述了天球历书极目前实现及其缺陷,介绍了新的天球参考极-天球中间极的定义及其实现。  相似文献   

3.
新参考系的引入对天体测量学的影响   总被引:5,自引:0,他引:5  
由于观测、参考架、模型、时间尺度精度的不断提高和完善,国际天球参考系(ICRS)被引入使用,IAU2000年大会决定从2003年起采用新的天球中介极(CIP)、新的天球中介原点(CIO)、新的岁差一章动模型和新的UTI定义等,并定义了新的中介的运动参考架,由此给天体测量学带来很大的影响,天体测量学的内容和实践发生了许多重要的变化。据此,对天体测量学的术语、概念和定义的变化作了描述,并讨论了变化的原因和对天体测量学的影响。新的一套天体测量理论和方法正在变更之中,我们应及时跟上这个领域的发展步伐。  相似文献   

4.
地球自转速度的不均匀性的存在使传统的世界时的概念变得复杂、模糊和不精确。引进赤道上的无旋转原点代替历书春分点并不能使上述问题得到解决。世界时曾在三个方面起过作用:(1)提供一个均匀的时间尺度;(2)是描述地球参考系和天球参考系之间关系的参数之一;(4)为协调时UTC跳秒提供依据。这里的第一项作用早已被国际原子时尺度所取代。第二项作用可以由恒星时更直接更简单地实现。第三项作用可通过恒星时与“坐标恒星时”之差的测定来实现。因此,作者认为,世界时这一传统概念已无继续存在的必要,长期以来由于世界时的概念所引进的各种矛盾只有在抛弃世界时的概念后才能和彻底解决。  相似文献   

5.
本文讨论了1980 IAU章动理论中关于天球历书极的定义。由于液核地球具有近周日自由极移,所以不能认为天球历书极对于地固坐标系没有近周日运动。建议把天球历书极的定义改为: “参考极的选择使得这个极相对于空固坐标系没有自由章动,对于地固坐标系没有日月极移;即它是消除日月极移的地球角动量极。”  相似文献   

6.
有些文献中关于UT0和UT1的关系的概念不够明确,甚至有明显的错误。本文论述了UT0和UT1关系的准确概念,指出:1、UT1是地球自转参数之一,它正比于地球绕暧时历书轴的自转角。UT1的数值与地球坐标系的参考的选取无关,也就是与地极坐标的原点的选取无关。因此,各服务机构得到的UT1序列之间除观测误差外不存在其他系统误差,它们是直接可比的。2、UT0不是地球自转参数,它仅是用单台站观测资料归算UT1过程中人为赋予的暂定值,因此没有独立的天文意义。一个具体UT0序列只对一特定台站有意义,它不具有全球意义。UT0的数值与地球坐标系的参考极的选取有关,即与极坐标原点的选取有关。  相似文献   

7.
国际天球参考系   总被引:2,自引:0,他引:2  
阐述了1998年1月4日起IAU采用的天球参考系的定义,以及它与以往采用的光学天球参考架FK5的关系。介绍了国际天球参考系在射电波段的实现过程,其稳定性的维持方法和它与依巴谷星表之间的关系。重点描述了影响国际天球参考架稳定性的物理因素-河外射电源的结构及其变化,射电源喷流的视超光速现象和由银河系盘星和大质量致密晕的引力透镜效应引起的视自行等。  相似文献   

8.
刘佳成  朱紫 《天文学进展》2012,30(4):411-437
1991年以来,在国际天文学联合会(IAU)全体大会上,通过了一系列关于天文参考系、时间尺度和地球自转模型的决议,其目的是为了适应不断提高的天文观测精度。其中最重要的3次,分别是在1997年的京都,2000年的曼彻斯特和2006年的布拉格通过的IAU 1997,IAU 2000和IAU 2006决议,主要的变化包括:从与历元有关的动力学参考系到与历元无关的运动学参考系,从参考系的恒星实现到河外射电源实现,从春分点到无旋转原点,以及岁差-章动模型的改进。由于这些决议在参考系转换等方面引入了很多新概念和新方法,对教学、研究和应用都产生了不小的影响,对它们进行解读,澄清概念,规范使用是有必要的。首先介绍IAU关于时间尺度和天文参考系的重要决议,并重点介绍IAU 2000和2006的每一条决议:然后详细介绍其应用:包括时间系统,国际天球参考系和岁差-章动模型,并和对应的旧系统进行比较;最后对这些决议的使用提出建议。  相似文献   

9.
IERS1996规范在参考系方面的改进   总被引:2,自引:0,他引:2  
对IERS1996规范中有关参考系方面作了简单而系统的介绍,重点叙述了与IERS1992标准相比IERS1996规范在参考系方面的主要改进:天球参考架中的基本源从57颗增加到236颗;动力学参考架采用JPL DE403/LE403历表代替DE200/LE200历表;采用NUVEL NNR-1A板块运动模型代替NUVEL NNR-1模型;变更了9个基本常数值;给出了天极坐标的观测和理论间差的经验模型  相似文献   

10.
本文分析了1992年至1995年期间国际地球自转服务(IERS)天球参考架的指向维持情况,结合1988年至1992年的指向维持情况指出,该参考架在1988年至1995年期间历年的指向均存在显著变化,赤经零点和天极的最大年度漂移约为0.4mas。至1995年,IERS天球参考架的赤经零点和天极与各自预期位置的偏差不于0.4mas。1994年和1995年的IERS天球参考架基本上维持了1993年的IERS天球参考指向,但是其实际维持精度约为0.05mas,并非0.005mas。0.005mas的维持精度只是数学上的平均效果,相当一部分基本源在相邻年度的IERS天球参考架中的坐标差大于0.5mas,这说明只有采用恰当的消除局部相对形变的方法,才能将天球参考架的指向真正维持在较高水平。  相似文献   

11.
A relation between the Celestial Reference System (CRS) and the Terrestrial Reference System is established theoretically by solving the equations of motion of a rigid Earth under the influence of the Sun and the Moon up to the second order perturbation. The solutions include not only nutation including Oppolzer terms but also the right ascension of the dynamical departure point (DP), as well as the wobble matrix.We have found that the kinematical definition of the Non-Rotating Origin NRO (for which our term is DP) given by Capitaine, Guinot and Souchay (1987) is not entirely equivalent to that included in the solutions of the equations of motion but shows perturbation, in particular when this is taken on the instantaneous equator. Besides this serious fault, we feel little merit in taking the DP as reference: (1) Unnecessary spurious mixed secular terms appear which come from the geometrical configuration that the DP leaves far and far from the ecliptic. (2) the DP moves secularly as well as oscillating with respect to space; this literally contradicts the term NRO, or is at least misleading. (3) It does not free us from the precession uncertainty to adopt DP as reference, since we cannot avoid virtual proper motions in terms of the current CRS. (4) No terms ignored hitherto are introduced, even if we take the DP properly chosen, i.e., on the equator of the celestial ephemeris pole. The transformation is only mathematical. There is no sufficient reason to take it instead of the equinox, which is observable in principle, as reference at the cost of the labor of changing all the textbooks, ephemerides, data and computer software now existing.  相似文献   

12.
The celestial pole coordinates   总被引:2,自引:0,他引:2  
The coordinates of the Celestial Ephemeris Pole in the Celestial Reference System (CRS) can advantageously replace the classical precession and nutation parameters in the matrix transformation of vector components from the CRS to the Terrestrial Reference System (TRS). This paper shows that the new matrix transformation using these coordinates in place of the preceding parameters would be conceptually more simple, especially when associated with the use of the non-rotating origin on the instantaneous equator (Guinot 1979, Capitaine et al. 1986) and of a celestial reference frame as realized by positions of extragalactic sources. In such a representation, the artificial separation between precession and nutation is avoided and the practical computation of the matrix transformation only requires the knowledge of the two celestial direction cosines of the pole, instead of the large number of the quantities generally considered. The development of these coordinates is given as function of time so that their use is equivalent (when using the CRS defined by the mean pole and mean equinox of epoch J2000.0, the 1976 IAU System of Astronomical Constants and the 1980 IAU theory of nutation) to the one of the conventional series for the precession (Lieske et al. 1977) and nutation (Seidelmann 1982) parameters. Such a theoretical development should also be used in order to derive more directly the numerical coefficients of the celestial motion of the instantaneous equator from very precise observations such as VLBI.
Résumé Les coordonnées du Pôle Céleste des Ephémerides dans le Systeme de Référence Céleste (CRS) pourraient remplacer avantageusement les paramètres classiques de precession et de nutation dans la matrice de transformation entre le CRS et le Système de Référence Terrestre (TRS). Cet article montre que la nouvelle matrice de transformation utilisant ces coordonnées à la place des paramètres classiques serait ainsi conceptuellement plus simple, en particulier lorsque l'on utilise l'origine non-tournante sur l'équa-teur instantané (Guinot 1979, Capitaine et al. 1986), ainsi que le repère de référence céleste réalisé par les positions des radiosources extragalactiques. Une telle representation évite la séparation artificielle entre précession et nutation et le calcul de la matrice de transformation correspondante ne nécessite que la connaissance des deux cosinus directeurs du pole dans le repère céleste, au lieu du grand nombre de paramètres considérés généralement. Le dèveloppement de ces coordonnées en fonction du temps est donné de façon à ce que leur usage soit équivalent (lorsque l'on se rapporte au CRS défine par le pôle et l'équinoxe moyens de l'époque J2000.0, au Système de Constantes Astronomiques IAU-1976, ainsi qu'au modèle UAI-1980 de la nutation) à celui des séries conventionnelles de la precession (Lieske et al. 1977) et de la nutation (Seidelmann 1982). Un tel développement théorique devrait également être utilise pour déterminer plus directement les coefficients numériques du déplacement céleste de l'équateur instantané, à partir des observations très précises, comme par exemple, les observations VLBI.
  相似文献   

13.
Precise astrometric observations show that significant systematic differences of the order of 10 milliarcseconds (mas) exist between the observed position of the celestial pole in the International Celestial Reference Frame (ICRF) and the position determined using the International Astronomical Union (IAU) 1976 Precession (Lieske et al., 1977) and the IAU 1980 Nutation Theory (Seidelmann, 1982). The International Earth Rotation Service routinely publishes these 'celestial pole offsets', and the IERS Conventions (McCarthy, 1996) recommends a procedure to account for these errors. The IAU, at its General Assembly in 2000, adopted a new precession/nutation model (Mathews et al., 2002). This model, designated IAU2000A, which includes nearly 1400 terms, provides the direction of the celestial pole in the ICRF with an accuracy of ±0.1 mas. Users requiring accuracy no better than 1 mas, however, may not require the full model, particularly if computational time or storage are issues. Consequently, the IAU also adopted an abridged procedure designated IAU2000B to model the celestial pole motion with an accuracy that does not result in a difference greater than 1 mas with respect to that of the IAU2000A model. That IAU2000B model, presented here, is shown to have the required accuracy for a period of more than 50 years from 1995 to 2050.  相似文献   

14.
The use of new techniques for measuring the Earth's orientation in space and the intrinsic qualities of their attached terrestrial and celestial reference frames have now raised the accuracy of the computed polar coordinates and the angle of sidereal rotation to a level usually better than 0.001. The conceptual and conventional definitions of the Earth's pole of rotation and of the Universal Time UT1 must accordingly be given with the same order of precision. This paper gives a review of the past and present definitions of the celestial pole and UT1 as well as an evaluation of their deficiencies. Some necessary improvements in these definitions are proposed.  相似文献   

15.
本文简述了国际天球参考架的发展历史和现在射电参考架的现状—基准源选择的标准和参考架的稳定性。描述了地面上光学观测在依巴谷参考架的维持和加密的一系列工作。介绍由天体测量卫星GAIA和SIM给出的天球参考架可能逵到的精度。详述了在今后十年中地面天体测量的作用以及正在开展有关天球参考架的研究课题 ,同时也列出了我国正在和即将开展天体测量的几个研究课题  相似文献   

16.
We report the algorithms used in the software of the upgraded SBG camera. Fast-moving satellites are observed in the “rotated” coordinate system where one of the axes points towards the pole of the object’s orbit. The ephemeris for this coordinate system is computed based on the ephemeris for the equatorial coordinate system using special transition matrices. The parameters of the matrices are the coordinates of the orbital pole, which are found by averaging the vector products of the radius vectors of the consecutive positions of the satellite. The position angle of the image is computed as the difference between the hour angles of the orbital and celestial poles in the coordinate system, the pole of which coincides with the optical center of the frame. The speed of object tracking is computed via quadratic interpolation of the ephemeris in the “rotated” coordinate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号