首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The power spectra of temperature and vertical velocity variations in the solar photosphere are calculated using the data obtained through observations of a nonperturbed region near the solar disk center in the neutral iron line λ ≈ 639.3 nm conducted at the 70 cm German Vacuum Tower Telescope (VTT) located in the Canary Islands (Spain). The variations of these spectra with altitude are analyzed. It is found that the primary power in the lower photosphere is localized in the range of frequencies that correspond to granulation with a peak at the λ ≈ 1.5–2.0 Mm scale and is reduced with altitude, the power spectrum maximum in the upper photospheric layers is shifted towards larger scales (Δλ ≤ 1 Mm), and the power of variations of the vertical supergranulation velocity (λ ≈ 20–30 Mm) virtually does not change with altitude. An isolated mesogranulation regime (λ ≈ 5–12 Mm) is not found at any of the studied altitudes. The obtained results suggest that the convective structure of the solar photosphere at mesogranulation scales behaves like granulation: the mesostructures are a part of an extended distribution of granulation scales. It is shown that the supergranulation flows are stable throughout the entire photosphere and reach much higher altitudes than the granulation flows.  相似文献   

2.
Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.  相似文献   

3.

Observations of the solar photosphere show spatially compact large-amplitude Doppler velocity events with short lifetimes. In data from the Imaging Magnetograph eXperiment (IMaX) on the first flight of the Sunrise balloon in 2009, events with velocities in excess of 4\(\sigma \) from the mean can be identified in both intergranular downflow lanes and granular upflows. We show that the statistics of such events are consistent with the random superposition of strong convective flows and p-mode coherence patches. Such coincident superposition complicates the identification of acoustic wave sources in the solar photosphere, and may be important in the interpretation of spectral line profiles formed in solar photosphere.

  相似文献   

4.
We study the velocity fields in the region of quiet solar filaments using spectral observations at the Sayan Solar Observatory (ISTP, Irkutsk). Once the series of spectral images have been processed, maps of the two-dimensional distribution of the velocity and its variations in the chromosphere (in the Hβ λ = 486.13 nm line) and the photosphere (in the Fe I λ = 486.37 nm line) are constructed. The motions in the filaments have been found to consist of steady and periodic components. Our analysis of the spatial distributions of various oscillation modes shows that the short-period (<10 min) oscillations propagate mainly vertically and are observed at the filament edges, on scales of several arcseconds. The quasi-hour (>40 min) oscillations propagate mostly along the filament at a small angle to its axis. The intensity in the Hβ core in individual fragments of some filaments varies with a period of about one hour. The observed velocity structures in the filaments and the imbalance of steady motions on the opposite sides of the filaments can be explained in terms of the model of a twisted fine-structure magnetic flux tube.  相似文献   

5.
Sequential chromospheric brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. These studies have used differing detection and analysis techniques, making it difficult to compare results between studies. This work employs the automated detection algorithm of Kirk et al. (Solar Phys. 283, 97, 2013) to extract the physical characteristics of SCBs in 11 flares of varying size and intensity. We demonstrate that the magnetic substructure within the SCB appears to have a significantly smaller area than the corresponding \(\mbox{H}\upalpha\) emission. We conclude that SCBs originate in the lower corona around \(0.1~R_{\odot}\) above the photosphere, propagate away from the flare center at speeds of \(35\,\mbox{--}\,85~\mbox{km}\,\mbox{s}^{-1}\), and have peak photosphere magnetic intensities of \(148\pm2.9~\mbox{G}\). In light of these measurements, we infer SCBs to be distinctive chromospheric signatures of erupting coronal mass ejections.  相似文献   

6.
The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.  相似文献   

7.
Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of \(1~\mbox{pA}/\mbox{cm}^{2}\). Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor’s hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when \(\nu_{c}\gg \nu_{b}\), where \(\nu_{c}\) is the measurement bandwidth and \(\nu_{b} \approx 1/3~\mbox{Hz}\) is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately \(1/\nu_{c}\), and the average peak current density is a weakly increasing function that scales approximately like \(\nu_{c}^{0.1}\).  相似文献   

8.
The Sun emits radiation at several wavelengths of the electromagnetic spectrum. In the optical band, the solar radius is 695?700 km, and this defines the photosphere, which is the visible surface of the Sun. However, as the altitude increases, the electromagnetic radiation is produced at other frequencies, causing the solar radius to change as a function of wavelength. These measurements enable a better understanding of the solar atmosphere, and the radius dependence on the solar cycle is a good indicator of the changes that occur in the atmospheric structure. We measure the solar radius at the subterahertz frequencies of 0.212 and 0.405 THz, which is the altitude at which these emissions are primarily generated, and also analyze the radius variation over the 11-year solar activity cycle. For this, we used radio maps of the solar disk for the period between 1999 and 2017, reconstructed from daily scans made by the Solar Submillimeter-wave Telescope (SST), installed at El Leoncito Astronomical Complex (CASLEO) in the Argentinean Andes. Our measurements yield radii of \(966.5'' \pm2.8''\) for 0.2 THz and \(966.5'' \pm2.7''\) for 0.4 THz. This implies a height of \(5.0 \pm2.0 \times10^{6}\) m above the photosphere. Furthermore, we also observed a strong anticorrelation between the radius variation and the solar activity at both frequencies.  相似文献   

9.
The results of the observations of the active region (facula) near the center of the solar disk obtained with the German Vacuum Tower Telescope (VTT; Tenerife, Spain), are discussed. We have determined that the decrease in the contrast (brightness) of the facula with the magnetic field increasing from 130 to 160 mT is due to the fact that the V_V phase shift of waves in this range of magnetic field densities is close to zero (Φ VV ≈ 0), i.e., the wave becomes stationary and does not transfer energy from the photosphere to the chromosphere. The sound waves that propagate from the chromosphere towards the photosphere significantly affect the temperature characteristics of turbulent vortices at the level of formation of the continuous spectrum. In particular, the contrast of granules under the influence of these waves can increase by 25%.  相似文献   

10.
Distribution of cold gas in the post-reionization era provides an important link between distribution of galaxies and the process of star formation. Redshifted 21-cm radiation from the hyperfine transition of neutral hydrogen allows us to probe the neutral component of cold gas, most of which is to be found in the interstellar medium of galaxies. Existing and upcoming radio telescopes can probe the large scale distribution of neutral hydrogen via HI intensity mapping. In this paper, we use an estimate of the HI power spectrum derived using an ansatz to compute the expected signal from the large scale HI distribution at z~3. We find that the scale dependence of bias at small scales makes a significant difference to the expected signal even at large angular scales. We compare the predicted signal strength with the sensitivity of radio telescopes that can observe such radiation and calculate the observation time required for detecting neutral hydrogen at these redshifts. We find that OWFA (Ooty Wide Field Array) offers the best possibility to detect neutral hydrogen at z~3 before the SKA (Square Kilometer Array) becomes operational. We find that the OWFA should be able to make a 3 σ or a more significant detection in 2000 hours of observations at several angular scales. Calculations done using the Fisher matrix approach indicate that a 5σ detection of the binned HI power spectrum via measurement of the amplitude of the HI power spectrum is possible in 1000 h (Sarkar et al. 2017).  相似文献   

11.
12.
On 21 September 2012, we carried out spectral observations of a solar facula in the Si?i 10827 Å, He?i 10830 Å, and H\(\upalpha\) spectral lines. Later, in the process of analyzing the data, we found a small-scale flare in the middle of the time series. Based on the anomalous increase in the absorption of the He?i 10830 Å line, we identified this flare as a negative flare.The aim of this article is to study the influence of the negative flare on the oscillation characteristics in the facular photosphere and chromosphere.We measured the line-of-sight (LOS) velocity and intensity of all the three lines as well as the half-width of the chromospheric lines. We also used the Helioseismic and Magnetic Imager (HMI) magnetic field data. The flare caused a modulation of all these parameters. In the location of the negative flare, the amplitude of the oscillations increased four times on average. In the adjacent magnetic field local maxima, the chromospheric LOS velocity oscillations appreciably decreased during the flare. The facular region oscillated as a whole with a 5-minute period before the flare, and this synchronicity was disrupted after the flare. The flare changed the spectral composition of the LOS magnetic field oscillations, causing an increase in the low-frequency oscillation power.  相似文献   

13.
We investigate the structure of convective flows in the solar photosphere on subgranulation scales. The solar granulation pattern is reproduced by solving the inverse problem of nonequilibrium radiation transfer on the basis of the profiles of the neutral iron line λ 523.42 nm. The wave motions are excluded by the k-ω filtration. The line-of-sight velocity has an asymmetric distribution inside the convective flows in large granules (1.5″ and larger) in the lower photosphere and at the bottom of the middle photosphere. This asymmetry is weaker in the upper photosphere. For smaller flows the distribution is more symmetric at all heights. The asymmetry of the temperature distribution is less pronounced. Large convective flows were found to have a fine structure: they are fragmentized into several smaller flows. The fine structure of large flows and spatial smearing are responsible for the observed asymmetry of the convection velocity distribution inside flows.  相似文献   

14.
Semiempirical models of the photosphere of an Ellerman bomb in the NOAA 11024 active region were obtained using profiles of Stokes parameters I, Q, U, and V of photospheric lines. Spectropolarimetric observations were conducted using the French–Italian THEMIS telescope (Tenerife, Spain). The SIR inversion code [28] was used in the modeling. The models have two components: a magnetic flux tube and nonmagnetic surroundings. The dependences of temperature, magnetic field strength, inclination of the magnetic field vector, and line-of-sight velocity in the tube on the optical depth were obtained. The models demonstrate that the thermodynamic parameters of the Ellerman bomb photosphere differ considerably from those of the quiet photosphere. The temperature in the tube model varied nonmonotonically with height and deviated by up to 700–900 K from its values for the quiet photosphere. Downflows were observed in the lower and the upper photospheric layers. The line-of-sight velocity in the upper layers of the photosphere was as high as 17 km/s. The magnetic field strength in the models varied from 0.1–0.13 T in the lower photospheric layers to 0.04–0.07 T in the upper ones. The physical state of the photosphere did change in the course of observations.  相似文献   

15.
We present LTE analysis of high resolution optical spectra for B-type hot PAGB stars LS IV-04 1 and LB3116 (LSE 237). The spectra of these high Galactic latitude stars were obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph. The standard 1D LTE analysis with line-blanketed LTE model atmospheres and spectral synthesis provided fundamental atmospheric parameters of Teff= 15 000±1000 K, log g= 2.5±0.2, ξ = 5.0±1.0 km s?1, [M/H] = ?1.81 dex, and v sin i= 5 km s?1 for LSIV-04 1 and Teff= 16 000±1000 K, log g= 2.5±0.1, v sin i= 25 km s?1, and [Fe/H] = ?0.93 dex for LB 3116. Chemical abundances of ten different elements were obtained. For LS IV-04 1, its derived model temperature contradicts with previous analysis results. The upper limits for its nitrogen and oxygen abundances were reported for the first time. The magnesium, silicon and calcium were overabundant (i.e. [Mg/Fe] = 0.8 dex, [Si/Fe] = 0.5 dex, [Ca/Fe] = 0.9 dex). With its metal-poor photosphere and VLSR ≈ 96 km s?1, LSIV-04 1 is likely a population II star and most probably a PAGB star. LTE abundances of LB 3116 were reported for the first time. The spectrum of this helium rich star shows 0.9 dex enhancement in the nitrogen. The photosphere of the star is slightly deficient in Mg, Si, and S. (i.e. [Mg/Fe] = ?0.2 dex, [Si/Fe] = ?0.4 dex, [S/Fe] = ?0.2 dex). The Al is slightly enhanced. The phosphorus is overabundant, i.e. [P/Fe] ≈ 1.7 ± 0.47 dex, hence LB3116 may be the first example of a PAGB star which is rich in phosphorus. With its high radial velocity (i.e.VLSR = 73 km s?1), and the deficiencies observed in C, Mg, Si, and S indicate that LB 3116 is likely a hot PAGB star at high galactic latitude.  相似文献   

16.
We have analyzed Interface Region Imaging Spectrograph (IRIS) spectral and slit-jaw observations of a quiet region near the South Pole. In this article we present an overview of the observations, the corrections, and the absolute calibration of the intensity. We focus on the average profiles of strong (Mg?ii h and k, C?ii and Si?iv), as well as of weak spectral lines in the near ultraviolet (NUV) and the far ultraviolet (FUV), including the Mg?ii triplet, thus probing the solar atmosphere from the low chromosphere to the transition region. We give the radial variation of bulk spectral parameters as well as line ratios and turbulent velocities. We present measurements of the formation height in lines and in the NUV continuum from which we find a linear relationship between the position of the limb and the intensity scale height. We also find that low forming lines, such as the Mg?ii triplet, show no temporal variations above the limb associated with spicules, suggesting that such lines are formed in a homogeneous atmospheric layer and, possibly, that spicules are formed above the height of \(2''\). We discuss the spatio-temporal structure of the atmosphere near the limb from images of intensity as a function of position and time. In these images, we identify p-mode oscillations in the cores of lines formed at low heights above the photosphere, slow-moving bright features in O?i and fast-moving bright features in C?ii. Finally, we compare the Mg?ii k and h line profiles, together with intensity values of the Balmer lines from the literature, with computations from the PROM57Mg non-LTE model, developed at the Institut d’ Astrophysique Spatiale, and estimated values of the physical parameters. We obtain electron temperatures in the range of \({\sim}\, 8000~\mbox{K}\) at small heights to \({\sim}\, 20\,000~\mbox{K}\) at large heights, electron densities from \(1.1\times 10^{11}\) to \(4\times 10^{10}~\mbox{cm}^{-3}\) and a turbulent velocity of \({\sim}\, 24~\mbox{km}\,\mbox{s}^{-1}\).  相似文献   

17.
Observations of the chemically peculiar star HD 27404 with the 6-m SAO RAS telescope showed a strong magnetic field with the longitudinal field component varying in a complicated way in the range of ?2.5 to 1 kG. Fundamental parameters of the star (Teff = 11 300 K, log g = 3.9) were estimated analyzing photometric indices in the Geneva and in the Stro¨ mgren–Crawford photometric systems. We detected weak radial velocity variations which can be due to the presence of a close star companion or chemical spots in the photosphere. Rapid estimation of the key chemical element abundance allows us to refer HD 27404 to a SiCr or Si+ chemically peculiar A0–B9 star.  相似文献   

18.
We present a precise and complete procedure for processing spectral data observed by the one-meter New Vacuum Solar Telescope (NVST). The procedure is suitable for both sit-and-stare and raster-scan spectra. In this work, the geometric distortions of the spectra are first corrected for subsequent processes. Then, considering the temporal changes and the remnants of spectral lines in the flat-field, the original flat-field matrix is split into four independent components to ensure a high-precision flat-fielding correction, consisting of the continuum gradient matrix, slit non-uniform matrix, CCD dust matrix, and interference fringe matrix. Subsequently, the spectral line drifts and intensity fluctuations of the science data are further corrected. After precise reduction with this procedure, the measuring accuracies of the Doppler velocities for different spectral lines and of the oscillation curves of the chromosphere and photosphere are measured. The results show that the highest measuring accuracy of the Doppler velocity is within \(100~\mbox{m}\,\mbox{s}^{-1}\), which indicates that the characteristics of the photosphere and chromosphere can be studied cospatially and cotemporally with the reduced spectra of the NVST.  相似文献   

19.
We present detailed characteristics of linear polarization features (LPFs) in the quiet-Sun photosphere from high-resolution observations obtained with Sunrise/IMaX. We explore differently treated data with various noise levels in linear polarization signals, from which structure and dynamics of the LPFs are studied. Physical properties of the detected LPFs are also obtained from the results of Stokes inversions. The number of LPFs and their sizes and polarization signals are found to be strongly dependent on the noise level and on the spatial resolution. While the linear polarization with a signal-to-noise ratio \(\geq4.5\) covers about 26% of the entire area in the least noisy data in our study (with a noise level of \(1.7\times10^{-4}\) in the unit of Stokes \(I\) continuum), the detected (spatially resolved) LPFs cover about 10% of the area at any given time, with an occurrence rate on the order of \(8\times10^{-3}\mbox{ s}^{-1}\)?arcsec?2. The LPFs were found to be short lived (in the range of 30?–?300 s), relatively small structures (radii of \(\approx0.1\)?–?1.5 arcsec), highly inclined, posing hG fields, and they move with an average horizontal speed of 1.2 km?s?1. The LPFs were observed (almost) equally on both upflow and downflow regions, with an intensity contrast always larger than that of the average quiet Sun.  相似文献   

20.
The precise physical process that triggers solar flares is not currently understood. Here we attempt to capture the signature of this mechanism in solar-image data of various wavelengths and use these signatures to predict flaring activity. We do this by developing an algorithm that i) automatically generates features in 5.5 TB of image data taken by the Solar Dynamics Observatory of the solar photosphere, chromosphere, transition region, and corona during the time period between May 2010 and May 2014, ii) combines these features with other features based on flaring history and a physical understanding of putative flaring processes, and iii) classifies these features to predict whether a solar active region will flare within a time period of \(T\) hours, where \(T = 2 \mbox{ and }24\). Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We find that when optimizing for the True Skill Score (TSS), photospheric vector-magnetic-field data combined with flaring history yields the best performance, and when optimizing for the area under the precision–recall curve, all of the data are helpful. Our model performance yields a TSS of \(0.84 \pm0.03\) and \(0.81 \pm0.03\) in the \(T = 2\)- and 24-hour cases, respectively, and a value of \(0.13 \pm0.07\) and \(0.43 \pm0.08\) for the area under the precision–recall curve in the \(T=2\)- and 24-hour cases, respectively. These relatively high scores are competitive with previous attempts at solar prediction, but our different methodology and extreme care in task design and experimental setup provide an independent confirmation of these results. Given the similar values of algorithm performance across various types of models reported in the literature, we conclude that we can expect a certain baseline predictive capacity using these data. We believe that this is the first attempt to predict solar flares using photospheric vector-magnetic field data as well as multiple wavelengths of image data from the chromosphere, transition region, and corona, and it points the way towards greater data integration across diverse sources in future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号