首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flash spectra of the solar chromosphere and corona were measured with a slitless spectrograph before, after, and during the totality of the solar eclipse of 11 July 2010, at Easter Island, Chile. This eclipse took place at the beginning of Solar Cycle 24, after an extended minimum of solar activity. The spectra taken during the eclipse show a different intensity ratio of the red and green coronal lines compared with those taken during the total solar eclipse of 1 August 2008, which took place toward the end of Solar Cycle 23. The characteristic coronal emission line of forbidden Fe xiv (5303 Å) was observed on the east and west solar limbs in four areas relatively symmetrically located with respect to the solar rotation axis. Subtraction of the continuum flash-spectrum background led to the identification of several extremely weak emission lines, including forbidden Ca xv (5694 Å), which is normally detected only in regions of very high excitation, e.g., during flares or above large sunspots. The height of the chromosphere was measured spectrophotometrically, using spectral lines from light elements and compared with the equivalent height of the lower chromosphere measured using spectral lines from heavy elements.  相似文献   

2.
White-light observations of the total solar eclipse on 13 November 2012 were made at two sites, where the totality occurred 35 min apart. The structure of the corona from the solar limb to a couple of solar radii was observed with a wide dynamic range and a high signal-to-noise ratio. An ongoing coronal mass ejection (CME) and a pre-CME loop structure just before the eruption were observed in the height range between 1?–?2 R. The source region of CMEs was revealed to be in this height range, where the material and the magnetic field of CMEs were located before the eruption. This height range includes the gap between the extreme ultraviolet observations of the low corona and the spaceborne white-light observations of the high corona, but the eclipse observation shows that this height range is essential for the study of CME initiation. The eclipse observation is basically just a snapshot of CMEs, but it indicates the importance of a continuous coverage of CME observations in this height range in the future.  相似文献   

3.
When coronal mass ejections (CMEs) interact with the solar corona and the interplanetary medium, emissions at different wavelengths occur. On the basis of study of the various radiation mechanisms of space plasma in the case of absence of CMEs, the radio radiation mechanisms of the plasma close to the Lagrange point L1 and affected by large CMEs from February to August 1999 are statistically analyzed. As shown by the results, the main radiation mechanisms are the Bremsstrahlung, a small amount of cyclotron radiation and a still weaker recombination radiation. Also, solar microwave bursts which are associated with CMEs in the same period are investigated. The results show that the microwave bursts are of the gradual type as well as spike bursts, and that the chief radiation mechanisms are the Bremsstrahlung, cyclotron resonance radiation, plasma radiation and electronic cyclotron maser radiation.  相似文献   

4.
The magnetic field lines of the corona associated with the solar-cycle surface general magnetic field are calculated by a potential-field approximation to study the solar-cycle evolution of the geometry of the coronal field. The surface field evolution used here is the radial field evolution, predicted by a model of the solar cycle driven by the dynamo action of the global convection, and justified observationally using Mount Wilson magnetic synoptic chart data. The evolution of the calculated coronal general field is now good for comparison with observations and shows the following. (i) The field of the polar and high-altitude corona has dipolar structure in almost all phases of the solar cycle except in a short time interval around maximum phase despite the quadrupolar structure of the general magnetic field at the surface; quadrupolar field forms loop-like structure in the lower corona. The almost-dipolar structure of the polar and high-latitude corona and the loop formation of the equatorial lower corona explain the appearance of the undisturbed minimum corona observed at eclipses. (ii) The polar field lines are directed almost radially at the minimum phase, which should be responsible for polar plumes. The field lines slowly open up to participate in the loop-like structure of the equatorial lower corona, and rapidly change their structure and polarity at the maximum phase, to resume the almost radial configuration slowly, (iii) During the rapidly changing maximum phase, the field lines do not penetrate deep into the interplanetary space resulting in the absence of polar plumes and the appearance of the circular corona- the maximum corona. In this phase, the coronal field should not be approximated by a dipole field. The surface field evolution which can explain such behaviors of the corona is characteristic of the solar-cycle process dominated by the latitudinal gradient of the differential rotation. If the radial gradient dominated in the subsurface process, the coronal evolution would look quite different and would show latitudinal propagation of enhancement of activity. Although nonaxisymmetric features should be superposed on the axisymmetric general field to express the real corona, the general field can be a basic coronal field in studying long-term interaction between the convection zone and the interstellar space especially in studying the magnetic braking of the solar rotation.  相似文献   

5.
Andrews  M.D. 《Solar physics》2002,208(2):317-324
Several recent papers have considered the observation of halo coronal mass ejections (CMEs) using the assumption that coronal emission is symmetric with respect to angular position from the Sun. This paper presents a simple but rigorous treatment of the observation of a single electron in the solar corona. The brightness of an electron as a function of height and angle from the solar limb is presented. The conclusion is reached that there is a front-to-back asymmetry of coronal emission that becomes significant at large angle and/or large height. The observation of halo CMEs is considered. The suggestion is made that a mass cut-off makes it likely that halo CMEs will be more massive, wider, and faster than the typical CMEs. Front-side halos should be more commonly observed than CMEs from the back side.  相似文献   

6.
The height of the source region of Si II emission lines characterizes the height of the bottom layer of solar atmosphere's transition region. The correlation analysis of the intensities of ultraviolet spectral lines and the threedimensional structure of magnetic field yielded by force-free extrapolation is a new method for determining the height of ultraviolet emission lines’ source region. It has been found that the height thus obtained is larger than that given by traditional viewpoint. Because the existing numerical analyses with this method are scarce, this result has to be further verified with more observational materials. In this work, this method is applied to the Si II emission lines observed by SOHO/SUMER for the solar surface region beneath the solar coronal hole at southern pole and to the magnetic fields measured by National Solar Observatory/Kitt Peak (NSO/KP) in U.S.A. The correlation height of the source region of Si II emission lines in coronal hole region is approximately 5.0 Mm. This result supports the conclusion that the height of the bottom layer of transition region in coronal hole region is larger than that in quiet regions. Moreover, some new phenomena have been discovered and their causes are probed.  相似文献   

7.
We have employed a two-dimensional magnetohydrodynamic simulation code to study mass motions and large-amplitude coronal waves related to the lift-off of a coronal mass ejection (CME). The eruption of the filament is achieved by an artificial force acting on the plasma inside the flux rope. By varying the magnitude of this force, the reaction of the ambient corona to CMEs with different acceleration profiles can be studied. Our model of the ambient corona is gravitationally stratified with a quadrupolar magnetic field, resulting in an ambient Alfvén speed that increases as a function of height, as typically deduced for the low corona. The results of the simulations show that the erupting flux rope is surrounded by a shock front, which is strongest near the leading edge of the erupting mass, but also shows compression near the solar surface. For rapidly accelerating filaments, the shock front forms already in the low corona. Although the speed of the driver is less than the Alfvén speed near the top of the atmosphere, the shock survives in this region as well, but as a freely propagating wave. The leading edge of the shock becomes strong early enough to drive a metric type II burst in the corona. The speed of the weaker part of the shock front near the surface is lower, corresponding to the magnetosonic speed there. We analyze the (line-of-sight) emission measure of the corona during the simulation and recognize a wave receding from the eruption site, which strongly resembles EIT waves in the low corona. Behind the EIT wave, we clearly recognize a coronal dimming, also observed during CME lift-off. We point out that the morphology of the hot downstream region of the shock would be that of a hot erupting loop, so care has to be taken not to misinterpret soft X-ray imaging observations in this respect. Finally, the geometry of the magnetic field around the erupting mass is analyzed in terms of precipitation of particles accelerated in the eruption complex. Field lines connected to the shock are further away from the photospheric neutral line below the filament than the field lines connected to the current sheet below the flux rope. Thus, if the DC fields in the current sheet accelerate predominantly electrons and the shock accelerates ions, the geometry is consistent with recent observations of gamma rays being emitted further out from the neutral line than hard X-rays.  相似文献   

8.
The Ultraviolet Coronagraph Spectrometer on the SOHO satellite covers the 940–1350 Å range as well as the 470–630 Å range in second order. It has detected coronal emission lines of H, N, O, Mg, Al, Si, S, Ar, Ca, Fe, and Ni, particularly in coronal streamers. Resonance scattering of emission lines from the solar disk dominates the intensities of a few lines, but electron collisional excitation produces most of the lines observed. Resonance, intercombination and forbidden lines are seen, and their relative line intensities are diagnostics for the ionization state and elemental abundances of the coronal gas. The elemental composition of the solar corona and solar wind vary, with the abundance of each element related to the ionization potential of its neutral atom (First Ionization Potential–FIP). It is often difficult to obtain absolute abundances, rather than abundances relative to O or Si. In this paper, we study the ionization state of the gas in two coronal streamers, and we determine the absolute abundances of oxygen and other elements in the streamers. The ionization state is close to that of a log T = 6.2 plasma. The abundances vary among, and even within, streamers. The helium abundance is lower than photospheric, and the FIP effect is present. In the core of a quiescent equatorial streamer, oxygen and other high-FIP elements are depleted by an order of magnitude compared with photospheric abundances, while they are depleted by only a factor of 3 along the edges of the streamer. The abundances along the edges of the streamer (‘legs’) resemble elemental abundances measured in the slow solar wind, supporting the identification of streamers as the source of that wind component.  相似文献   

9.
This is the first part of a series of two articles aimed at revealing the role of the Compton effect in scattering of the solar photospheric radiation by coronal suprathermal streams. The simplest situation of a single beam of electrons gyrating around the strength lines of magnetic field is considered. Attention is focused on the height-independent problem, in which the role of the spatial angle of incident radiation is ignored. Analytical expressions for the frequency change of interacting photons and for the proper cross-section of the scattering process are derived. The results of numerical calculations show that the effect may by significant even for moderate energies of fast electrons and will be observable only if the fractional density of fast electrons is not too small.  相似文献   

10.
Coronal density, temperature, and heat-flux distributions for the equatorial and polar corona have been deduced from Saito’s model of averaged coronal white-light (WL) brightness and polarization observations. These distributions are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates similar distributions at large radial distances (>?7 R) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e. conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating extends up into the inner corona, where it maximizes at r>1.5 R, well above the transition region.  相似文献   

11.
Richard Woo 《Solar physics》2005,231(1-2):71-85
The solar magnetic field is key to a detailed understanding of the Sun's atmosphere and its transition to the solar wind. However, the lack of detailed magnetic field measurements everywhere except at the photosphere has made it challenging to determine its topology and to understand how it produces the observed plasma properties of the corona and solar wind. Recent progress based on the synthesis of diversified observations has shown that the corona is highly filamentary, that the coronal magnetic field is predominantly radial, and that the ability of closed fields to trap plasma at the base of the corona is a manifestation of how the solar field controls the solar wind. In this paper, we explain how these results are consistent with the relationship between density structure of white-light images and fields and flow. We point out that the ‘shape’ of the corona observed in white-light images is a consequence of the steep fall-off in density with radial distance, coupled with the inherent limitation in the sensitivity of the observing instrument. We discuss how the significant variation in radial density fall-off with latitude leads to a coronal shape that is more precisely revealed when a radial gradient filter is used, but which also gives a false impression of the tracing of highly non-radial fields. Instead, the coronal field is predominantly radial, and the two magnetic features that influence the shape of the corona are the closed fields at the base of the corona, and the polarity reversal forming the heliospheric current sheet in the outer corona. An erratum to this article is available at .  相似文献   

12.
Magnetic field and plasma properties of the solar wind measured in near-Earth space are a convolution of coronal source conditions and in-transit processes which take place between the corona and near-Earth space. Elemental composition and heavy ion charge states, however, are not significantly altered during transit to Earth and thus such properties can be used to diagnose the coronal source conditions of the solar wind observed in situ. We use data from the Advanced Composition Explorer (ACE) spacecraft to statistically quantify differences in the coronal source properties of interplanetary coronal mass ejections (ICMEs). Magnetic clouds, ICMEs which contain a magnetic flux-rope signature, display heavy ion properties consistent with significantly hotter coronal source regions than non-cloud ICMEs. Specifically, magnetic clouds display significantly elevated ion charge states, suggesting they receive greater heating in the low corona. Further dividing ICMEs by speed, however, shows this effect is primarily limited to fast magnetic clouds and that in terms of heavy ion properties, slow magnetic clouds are far more similar to non-cloud ICMEs. As such, fast magnetic clouds appear distinct from other ICME types in terms of both ion charge states and elemental composition. ICME speed, rather ICME type, correlates with helium abundance and iron charge state, consistent with fast ICMEs being heated through the more extended corona. Fast ICMEs also tend to be embedded within faster ambient solar wind than slow ICMEs, though this could be partly the result of in-transit drag effects. These signatures are discussed in terms of spatial sampling of ICMEs and from fundamentally different coronal formation and release processes.  相似文献   

13.
It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by \(1.76 \times 10^{19}~\mbox{cm}^{-2}\) for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.  相似文献   

14.
The purpose of this paper is to report on some intensity measurements of the Fe xiii lines at 10 747 Å and 10 798 Å made during the total eclipse of 12 November, 1966. Infrared spectra were taken of the solar corona at a dispersion of 90 Å per mm, using an RCA image converter and spectrograph aboard the NASA CV 990 aircraft off the coast of southern Brazil. The spectra have been reduced to equivalent width in terms of the coronal continuum and values derived for different points in the corona.The observed equivalent widths of the lines lie in the range 10 to 30 Å for the 10 747 line and 5 to 12 Å for the 10 798 line. The ratio of these equivalent widths is found to vary from 2.3 in the inner corona to 6 at a point 1.36 solar radii from the center of the Sun.The above results are discussed in terms of the excitation mechanisms involved in producing the lines. In particular, the results are compared with the recent theoretical calculations of Chevalier and Lambert, who are the first to include the effects of proton collisions in the excitation of the 3p 2 3 P levels of Fexiii. Our observations are consistent with an electron density of 4 × 108 in the inner corona; a value which compares favorably with those derived by other observers from the strength of the K continuum. These are, to our knowledge, the first eclipse observations of the infrared Fe xiii lines which indicate that proton collisions are important in the excitation of the coronal lines. The coronal abundance of iron is estimated from the equivalent width of the 10 747 line, and in common with other observers we find an overabundance as compared to the photospheric abundance by a factor of 10.  相似文献   

15.
The geometrical and dynamical structure of a corona consisting of streamer and interstreamer regions is examined. The present paper is an extension of previous works of this series in that energy transport processes are included in the theoretical framework of the model. Under specified conditions at some reference level above the coronal base, the structure at larger distances is determined by simultaneous integration of the continuity, momentum, and energy equations for each region subject to the condition for a lateral balance of magnetic and gas pressure at all levels. Outward thermal conduction and convection by the solar wind are assumed to be the processes contributing to the energy balance of each region, the magnetic field effectively thermally insulating one region from the other.Numerical results are presented for situations representative of the solar corona. Regions occupied by streamers are found to have higher densities than their surroundings at all distances from the sun. For a given density at the coronal base, the density at the orbit of earth is lower in both the streamer and interstreamer region than that predicted for radial flow. The density enhancement increases outward to a maximum value at a distance of several solar radii. In addition, beyond a distance of a few radii streamers are characterized by higher expansion velocities and lower temperatures than their immediate surroundings. Similar to the case of radial flow, supersonic solutions exist only for base densities below a certain value, which depends upon the specified base temperature and magnetic field distribution. The general features illustrated by these models are expected to persist in the advent of more sophisticated multi-region models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
Using K-coronameter observations made by the High Altitude Observatory at Haleakala and Mauna Loa, Hawaii during 1964–1976, we determine the apparent recurrence period of white-light solar coronal features as a function of latitude, height, and time. A technique based on maximum entropy spectral analysis is used to produce rotational period estimates from daily K-coronal brightness observations at 1.125R S and 1.5R S from disk center and at angular intervals of 5° around the Sun's limb. Our analysis reaffirms the existence of differential rotation in the corona and describes both its average behavior and its large year-to-year variations. On the average, there is less differential rotation at the greater height. After 1966–1967 we observe a general increase in coronal rotation rate which may relate to similar behavior reported for the equatorial photospheric Doppler rate. However, the coronal rate increase is significantly greater than the photospheric. If K-coronal features reflect the rotation at depth in the Sun, the long-term rate increase and the variable differential rotation may be evidence for dynamically important exchanges of energy and momentum in the upper convection zone.  相似文献   

17.
The solar corona – one of the most spectacular celestial shows and yet one of the most challenging puzzles – exhibits a spectrum of structures related to both the quiet Sun and active regions. In spite of dramatic differences in appearance and physical processes, all these structures share a common origin: they are all related to the solar magnetic field. The origin of the field is beneath the turbulent convection zone, where the magnetic field is not a master but a slave, and one can wonder how much the coronal magnetic field “remembers” its dynamo origin. Surprisingly, it does. We will describe several observational phenolmena that indicate a close relationship between coronal and sub-photospheric processes.  相似文献   

18.
The Parker model is modified to describe a rapid temperature increase from the region of temperature minimum to the coronal base and to relate the electron density in the region of the temperature minimum (~0.85×1011 cm?3 according to the modified model) to that at the orbit of the Earth (~7.42 cm?3 according to the model). The coronal temperature reaches its maximum (1.8×106 K) at the Parker critical point; physical processes at this point are left beyond the scope of the model. It is suggested to consider the expanding solar corona as a self-heating system in which heating of the solar corona is related to the transonic regime of its expansion, which is maintained by the high coronal temperature.  相似文献   

19.
We review recent progress on our understanding of radio emission from solar flares and coronal mass ejections (CMEs) with emphasis on those aspects of the subject that help us address questions about energy release and its properties, the configuration of flare?–?CME source regions, coronal shocks, particle acceleration and transport, and the origin of solar energetic particle (SEP) events. Radio emission from electron beams can provide information about the electron acceleration process, the location of injection of electrons in the corona, and the properties of the ambient coronal structures. Mildly relativistic electrons gyrating in the magnetic fields of flaring loops produce radio emission via the gyrosynchrotron mechanism, which provides constraints on the magnetic field and the properties of energetic electrons. CME detection at radio wavelengths tracks the eruption from its early phase and reveals the participation of a multitude of loops of widely differing scale. Both flares and CMEs can ignite shock waves and radio observations offer the most robust tool to study them. The incorporation of radio data into the study of SEP events reveals that a clear-cut distinction between flare-related and CME-related SEP events is difficult to establish.  相似文献   

20.
Delaboudinière  J.P. 《Solar physics》1999,188(2):259-275
A diffuse emission is observed above the solar limb in the 304 Å channel of the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the SOHO spacecraft. Part of this emission is attributed to the presence of residual singly-ionized helium in the solar corona, which resonantly scatters the intense helium Lyman alpha radiation of the chromosphere. This emission can be distinguished from other coronal emissions in the EIT bandpass. Maps of the helium ion density integrated along the line of sight are derived. These agree well with models in the low latitude, closed magnetic field regions of the solar corona. However, the helium ions' abundance seems to be enhanced in the polar, open field regions above coronal holes. This may be related to acceleration processes of the fast solar wind close to the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号