首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA’s mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1,000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer “Marenostrum” in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.  相似文献   

2.
3.
A powerful and highly configurable simulator of generic clock frameworks is presented and evaluated. This software tool was initially designed to test the reliability of clock data for the Gaia space mission. However, our application has been developed as much parameterized as possible in order to easily adapt it to any other space mission. The main goals of our software tool are to simulate the real performance of an atomic master clock, including the typical noises present in this kind of devices, and to check the reliability of the generation and distribution of clock sub-products. The latter, which are generated by other devices such as frequency multipliers and dividers, are also implemented in the simulator, as well as the corresponding transmission lines. In our simulator the clock outputs obtained from the several nodes of the framework can be displayed with the appropriate graphical tools, therefore easing the task of validating several design issues. Also, the parameters of the master clock and of all the framework devices, as well as the whole clock framework structure are entered using XML files, which can also be graphically verified. Finally, the accuracy and stability of the atomic clock which is expected to fly on-board of Gaia is assessed. We also discuss in depth the several issues regarding the time data products that Gaia will require and we characterize the most important elements.  相似文献   

4.
A suite of vast stellar surveys mapping the Milky Way, culminating in the Gaia mission, is revolutionizing the empirical information about the distribution and properties of stars in the Galactic stellar disk. We review and lay out what analysis and modeling machinery needs to be in place to test mechanism of disk galaxy evolution and to stringently constrain the Galactic gravitational potential, using such Galactic star-by-star measurements. We stress the crucial role of stellar survey selection functions in any such modeling; and we advocate the utility of viewing the Galactic stellar disk as made up of ‘mono-abundance populations’ (MAPs), both for dynamical modeling and for constraining the Milky Way’s evolutionary processes. We review recent work on the spatial and kinematical distribution of MAPs, and point out how further study of MAPs in the Gaia era should lead to a decisively clearer picture of the Milky Way’s dark-matter distribution and formation history.  相似文献   

5.
The space experiment Gaia, the approved cornerstone 6 ESA mission, will observe up to a billion stars in our Galaxy and obtain their astrometric positions on a micro-arcsec level, multi-band photometry as well as spectroscopic observations. It is expected that about one million Eclipsing Binaries (EBs) (with V ≤ 16 mag) will be discovered and the observing fashion will be quite similar to Hipparcos/Tycho mission operational mode. The combined astrometric, photometric and spectroscopic data will be used to compute the physical parameters of the observed EBs. From a study of a small sample of EBs, it is shown that the agreement between the fundamental stellar parameters, derived from ground-based and Hipparcos (Gaia-like) observations, is more than satisfactory and the Gaia data will be suitable to obtain accurate binary solutions.  相似文献   

6.
The Dynamical Attitude Model (DAM) is a simulation package developed to achieve a detailed understanding of the Gaia spacecraft attitude. It takes into account external physical effects and considers internal hardware components controlling the satellite. The main goal of the Gaia mission is to obtain extremely accurate astrometry, and this necessitates a good knowledge of Gaia’s behaviour as a spinning rigid body under the influence of various perturbations. This paper describes these perturbations and how they are modelled in DAM.  相似文献   

7.
The mission Gaia by European Space Agency (ESA) is expected to fly at the end of 2011 and to perform an all-sky, magnitude-limited survey for 5 years. The probe will not use an input catalogue, and will get high accuracy astrometry and photometry for all sources of magnitude V<20. Low-resolution spectra will also be available. Moving Solar System objects will be observed as well, and their observations will be processed by a specific pipeline in order to retrieve the physical and dynamical characteristics of each object. In this contribution we will mainly focus on the impact of Gaia observations on asteroid dynamics. A dramatic improvement of orbital elements is expected, as well as the measurement of subtle effects such as those related to general relativity (GR). Gaia observations will also be supported by a network of ground-based observation sites, capable of providing follow-up for newly discovered objects that will not receive an adequate coverage from space. Specific strategies for follow-up are being planned and tested. These will need to take into account the peculiar observing geometry (large parallax effect due to the orbit of Gaia around L2) and the time constraints dictated by data processing.  相似文献   

8.
9.
简述了第二个天体测量卫星Gaia(将于2013年3月发射)项目的科学意义,并给出了该项目的组织工作和最近的进展.描述了Gala观测资料处理的基本原理,以及与依巴谷观测资料处理的不同点.介绍了Gaia参考架构建的考虑,以及为了构建微角秒量级的参考架,应在自行中加入系统差改正,如长期光行差、引力波效应、宇宙膨胀各向异性的影响,弱的微引力透镜和微引力透镜噪声效应等.介绍了Gaia光学参考架与射电参考架ICRFL2之间建立联系过程中,选择河外射电源的准则,其中包括源的核漂移和光学长期变化监测等.最后,提出了我国现有设备参与支持Gaia的地基观测,以及正在研制的65 m射电天线在射电天体测量方面可以开展的若干课题.  相似文献   

10.
The Gaia Space Mission [Mignard, F., 2005. The three-dimensional universe with Gaia. ESA/SP-576; Perryman, M., 2005. The three-dimensional universe with Gaia. ESA/SP-576] will observe several transient events as supernovae, microlensing, gamma ray bursts and new Solar System objects. The satellite, due to its scanning law, will detect these events but will not be able to monitor them. So, to take these events into consideration and to perform further studies it is necessary to follow them with Earth-based observations. These observations could be efficiently done by a ground-based network of well-equipped telescopes scattered in both hemispheres.Here we focus our attention at the new Solar System objects to be discovered and observed by the Gaia satellite [Mignard, F., 2002. Observations of Solar System objects by Gaia I. Detection of NEOS. Astron. Astrophys. 393, 727] mainly asteroids, NEOs and comets. A dedicated ground-based network of telescopes as proposed by Thuillot [2005. The three-dimensional universe with Gaia. ESA/SP-576] will allow to monitor those events, to avoid losing them and to perform a quick characterization of some physical properties which will be important for the identification of these objects in further measurements by Gaia.We present in this paper, the beginning of the organization of a Latin-American ground-based network of telescopes and observers joining several institutions in Argentina, Bolivia, Brazil and other Latin-American countries aiming to contribute to the follow-up of Gaia science alerts for Solar System objects.  相似文献   

11.
A continuity equation is developed to model the evolution of a swarm of self-propelled ‘smart dust’ devices in heliocentric orbit driven by solar radiation pressure. These devices are assumed to be MEMs-scale (micro-electromechanical systems) with a large area-to-mass ratio. For large numbers of devices it will be assumed that a continuum approximation can be used to model their orbit evolution. The families of closed-form solutions to the resulting swarm continuity equation then represent the evolution of the number density of devices as a function of both position and time from a set of initial data. Forcing terms are also considered which model swarm sources and sinks (device deposition and device failure). The closed-form solutions presented for the swarm number density provide insights into the behaviour of swarms of self-propelled ‘smart dust’ devices an can form the basis of more complex mission design methodologies.  相似文献   

12.
Gaia is an ambitious space observatory devoted to obtain the largest and most precise astrometric catalogue of astronomical objects from our Galaxy and beyond. On-board processing and transmission of the huge amount of data generated by the instruments is one of its several technological challenges. The measurement time tags are critical for the scientific results of the mission, so they must be measured and transmitted with the highest precision – leading to an important telemetry channel occupation. In this paper we present the optimization of time data, which has resulted in a useful software tool. We also present how time data is adapted to the packet telemetry standard. The several communication layers are illustrated and a method for coding and transmitting the relevant data is described as well. Although our work is focused on Gaia, the timing scheme and the corresponding tools can be applied to any other instrument or mission with similar operational principles.  相似文献   

13.
AGB variables, particularly the large amplitude Mira type, are a vital step on the distance scale ladder. They will prove particularly important in the era of space telescopes and extremely large ground-based telescopes with adaptive optics, which will be optimized for infrared observing. Our current understanding of the distances to these stars is reviewed with particular emphasis on improvements that came from Hipparcos as well as on recent work on Local Group galaxies. In addition to providing the essential calibration for extragalactic distances Gaia may also provide unprecedented insight into the poorly understood mass-loss process itself.  相似文献   

14.
Gaia is the most ambitious space astrometry mission currently envisaged and it will be a technological challenge in all its aspects. Here we describe a proposal for the data compression system of Gaia, specifically designed for this mission but based on concepts that can be applied to other missions and systems as well. Realistic simulations have been performed with our Telemetry CODEC software, which performs a stream partitioning and pre-compression to the science data. In this way, standard compressors such as bzip2 or szip boost their performance and decrease their processing requirements when applied to such pre-processed data. These simulations have shown that a lossless compression factor of 3 can be achieved, whereas standard compression systems were unable to reach a factor of 2.   相似文献   

15.
The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A study of cluster characteristics and internal kinematical structure of the middle-aged Pleiades open star cluster is presented. The individual star apexes and various cluster kinematical parameters including the velocity ellipsoid parameters are determined using both Hipparcos and Gaia data. Modern astrometric parameters were taken from the Gaia Data Release 1 (DR1) in combination with the Radial Velocity Experiment Fifth Data Release (DR5). The necessary set of parameters including parallaxes, proper motions and radial velocities are used for \(n=17\) stars from Gaia DR1+RAVE DR5 and for \(n=19\) stars from the Hipparcos catalog using SIMBAD data base. Single stars are used to improve accuracy by eliminating orbital movements. RAVE DR5 measurements were taken only for the stars with the radial velocity errors not exceeding \(2~\mbox{km}/\mbox{s}\). For the Pleiades stars taken from Gaia, we found mean heliocentric distance as \(136.8 \pm 6.4\) pc, and the apex position is calculated as: \(A_{CP}=92^{\circ }.52\pm 1^{\circ }.72\), \(D_{CP}=-42^{\circ }.28\pm 2^{\circ }.56\) by the convergent point method and \(A_{0}=95^{\circ }.59\pm 2^{\circ }.30\) and \(D_{0}=-50^{\circ }.90\pm 2^{\circ }.04\) using AD-diagram method (\(n=17\) in both cases). The results are compared with those obtained historically before the Gaia mission era.  相似文献   

17.
Hipparcos, the first ever experiment of global astrometry, was launched by ESA (European Space Agency) in 1989 and its results published in 1997 (Perryman et al. in Astron. Astrophys. 323:L49, 1997; Perryman & ESA (eds.) in The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino in Astron. Astrophys. 439:791, 2005; van Leeuwen in Astron. Astrophys. 474:653, 2007a). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20 000 stars (22 000 for the original catalogue, 30 000 for the re-reduction) with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in 2013 (Perryman et al., in Astron. Astrophys. 369:339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC (Gaia Data Processing and Analysis Consortium), we will illustrate what Gaia can provide with some selected examples.  相似文献   

18.
In this paper we gauge the potentiality of Gaia in the distance scale calibration of planetary nebulae (PNe) by assessing the impact of DR1 parallaxes of central stars of Galactic PNe (CSPNe) against known physical relations. For selected PNe targets with state-of-the-art data on angular sizes and fluxes, we derive the distance-dependent parameters of the classical distance scales, i.e., physical radii and ionized masses, from DR1 parallaxes; we propagate the uncertainties in the estimated quantities and evaluate their statistical properties in the presence of large relative parallax errors; we populate the statistical distance scale diagrams with this sample and discuss its significance in light of existing data and current calibrations. We glean from DR1 parallaxes 8 CSPNe with S/N> 1. We show that this set of potential calibrators doubles the number of extant trigonometric parallaxes (from HST and ground-based), and increases by two orders of magnitude the domain of physical parameters probed previously. We then use the combined sample of suitable trigonometric parallaxes to fit the physical-radius-to-surface-brightness relation. This distance scale calibration, although preliminary, appears solid on statistical grounds, and suggestive of new PNe physics. With the tenfold improvement in PNe number statistics and astrometric accuracy expected from future Gaia releases the new distance scale, already very intriguing, will be definitively constrained.  相似文献   

19.
Taking the re-entry object CZ-3B R/B (COSPAR identifier 2012-018D, NORAD catalog number 38253) as an example, retrieval of atmospheric mass densities in lower thermosphere below 200 km from its rebuilt precise orbit is studied in this paper. Two methodologies, i.e. analytical and numerical methods, are adopted in the retrieval. Basic principles of these two methodologies are briefly introduced. Based on the short-arc sparse observational data accumulated in the high accuracy re-entry prediction, orbit determinations of re-entry object CZ-3B R/B are performed sectionally, and then its precise orbit is rebuilt. According to the orbit theory, the variation of orbital semi-major axis of re-entry object CZ-3B R/B induced by atmospheric drag perturbation only is derived from the rebuilt precise orbit. In the derivation of secular change of the orbital semi-major axis of re-entry object CZ-3B R/B induced by atmospheric drag perturbation only, the time-span is set as one minute tentatively. And then retrieval results of atmospheric mass densities in lower thermosphere below 200 km by analytical and numerical methods are presented, as well as their bias deviations from the calculated results of the NRLMSISE-00 empirical model of the atmosphere. Setting bias deviation bands, the corresponding ‘confidence coefficients’ of the retrieved atmospheric mass densities with respect to the model values are given. Average bias deviations of the retrieved atmospheric mass densities by analytical and numerical methods from the model values are also calculated respectively. On the whole, the retrieved atmospheric mass densities by numerical method approach to the model values more closely; the differences between the retrieved results and the model values are relatively smaller at the peaks of atmospheric mass densities than the other places.  相似文献   

20.
Gaia is the next astrometry mission of the European Space Agency (ESA), following up on the success of the Hipparcos mission. With a focal plane containing 106 CCD detectors, Gaia will survey the entire sky and repeatedly observe the brightest 1,000 million objects, down to 20th magnitude, during its 5-year lifetime. Gaia’s science data comprises absolute astrometry, broad-band photometry, and low-resolution spectro-photometry. Spectroscopic data with a resolving power of 11,500 will be obtained for the brightest 150 million sources, down to 17th magnitude. The thermo-mechanical stability of the spacecraft, combined with the selection of the L2 Lissajous point of the Sun-Earth/Moon system for operations, allows stellar parallaxes to be measured with standard errors less than 10 micro-arcsecond (μas) for stars brighter than 12th magnitude, 25 μas for stars at 15th magnitude, and 300 μas at magnitude 20. Photometric standard errors are in the milli-magnitude regime. The spectroscopic data allows the measurement of radial velocities with errors of 15 km s−1 at magnitude 17. Gaia’s primary science goal is to unravel the kinematical, dynamical, and chemical structure and evolution of the Milky Way. In addition, Gaia’s data will touch many other areas of science, e.g., stellar physics, solar-system bodies, fundamental physics, and exo-planets. The Gaia spacecraft is currently in the qualification and production phase. With a launch in 2013, the final catalogue is expected in 2021. The science community in Europe, organised in the Data Processing and Analysis Consortium (DPAC), is responsible for the processing of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号