首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray polarimetry can be an important tool for investigating various physical processes as well as their geometries at the celestial X-ray sources. However, X-ray polarimetry has not progressed much compared to the spectroscopy, timing and imaging mainly due to the extremely photon-hungry nature of X-ray polarimetry leading to severely limited sensitivity of X-ray polarimeters. The great improvement in sensitivity in spectroscopy and imaging was possible due to focusing X-ray optics which is effective only at the soft X-ray energy range. Similar improvement in sensitivity of polarisation measurement at soft X-ray range is expected in near future with the advent of GEM based photoelectric polarimeters. However, at energies >10 keV, even spectroscopic and imaging sensitivities of X-ray detector are limited due to lack of focusing optics. Thus hard X-ray polarimetry so far has been largely unexplored area. On the other hand, typically the polarisation degree is expected to increase at higher energies as the radiation from non-thermal processes is dominant fraction. So polarisation measurement in hard X-ray can yield significant insights into such processes. With the recent availability of hard X-ray optics (e.g. with upcoming NuSTAR, Astro-H missions) which can focus X-rays from 5 KeV to 80 KeV, sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array scintillator detectors. We have carried out detailed Geant4 simulation to estimate the modulation factor for 100 % polarized beam as well as polarimetric efficiency of this configuration. We have also validated these results with a semi-analytical approach. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics.  相似文献   

2.
Over the last decade spectro‐polarimetry evolved to ever higher sensitivity levels. New techniques and instruments allow us to address weak polarization signals, which are caused by scattering in the solar atmosphere. In this paper a review on the development of spectro‐polarimetric investigations of scattering physics and its coupling to the solar magnetic field will be given. Starting from a technical point of view it will be demonstrated how our understanding of scattering phenomena and their role in solar physics in general has reached its current state. An outlook on future spectro‐polarimetry with new large solar telescopes concludes this review.  相似文献   

3.
The polarisation of astrophysical source emission in the energy range from a few tens of keV up to the MeV region is an almost unexplored field of high-energy astrophysics. Till date, polarimetry in astrophysics–in the energy domain from hard X-rays up to soft γ-rays–has not been pursued due to the difficulties involved in obtaining sufficient sensitivity. Indeed for those few instruments that are capable of performing this type of measurement (e.g. the COMPTEL instrument on the Compton Gamma-ray Observatory and the IBIS instrument on INTEGRAL), polarimetry itself plays a secondary role in the mission objectives, as the efficiencies (0.5% and 10% maximum, respectively) and polarimetric Q factors (0.1 and 0.3, respectively) are relatively limited. In order to perform efficient polarimetric measurements for hard X-ray and soft gamma-ray sources, with an instrument of relatively robust and simple design, a CdTe based telescope (CIPHER: Coded Imager and Polarimeter for High Energy Radiation) is under study. This instrument is based on a thick (10 mm) CdTe position-sensitive spectrometer comprising four modules of 32 × 32 individual pixels, each with a surface area of 2 × 2 mm2 (about 160 cm2 total detection area). The polarimetric performance and design optimisation of the CIPHER detection surface have been studied by use of a Monte Carlo code. This detector, due to its intrinsic geometry, can allow efficient polarimetric measurements to be made between 100 keV and 1 MeV. In order to predict the polarimetric performance and to optimise the design and concept of the CIPHER detection plane, a Monte Carlo code based on GEANT4 library modules was developed to simulate the detector behaviour under a polarised photon flux. The Compton double event efficiency, as well bi-dimensional double event distribution maps and the corresponding polarimetric modulation factor will be presented and discussed. Modulation Q factors better than 0.50 and double event total efficiencies greater than 10% were calculated in the energy range between 100 keV and 1 MeV. Herein we will present and discuss the general problems that affect polarimetric measurements in space, such as the inclination of the source with respect to the telescope optical axis and background radiation. Q factor calculations for several beam inclinations as well as for background together with simulated astronomical sources will be presented and discussed.  相似文献   

4.
We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IXPS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20?C50 keV energy range during an M- or X-class flare, and will provide imaging information at the ??10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.  相似文献   

5.
Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10?keV has increased dramatically (??8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10?keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will perform groundbreaking science in key scientific areas, including: black hole cosmic evolution, census and accretion physics; acceleration mechanism and non-thermal emission; physics of matter under extreme conditions. NHXM is designed specifically to address these topics via: broad 0.5?C80 (120) keV band for imaging and spectroscopy; 20?arcsec (15 goal) Half Energy Width (HEW) angular resolution at 30?keV; sensitivity limits more than 3 orders of magnitude better than those available in present day instruments; broadband (2?C35?keV) imaging polarimetry. In addition, NHXM has the ability to locate and actively monitor sources in different states of activity and to repoint within 1 to 2?h. This mission has been proposed to ESA in response to the Cosmic Vision M3 call. Its satellite configuration and payload subsystems were studied as part of previous national efforts permitting us to design a mature configuration that is compatible with a VEGA launch already by 2020.  相似文献   

6.
The Spectro-Polarimeter for Infrared and Optical Regions (SPINOR) is a new spectro-polarimeter that will serve as a facility instrument for the Dunn Solar Telescope at the National Solar Observatory. This instrument is capable of achromatic polarimetry over a very broad range of wavelengths, from 430 to 1600 nm, allowing for the simultaneous observation of several visible and infrared spectral regions with full Stokes polarimetry. Another key feature of the design is its flexibility to observe virtually any combination of spectral lines, limited only by practical considerations (e.g., the number of detectors available, space on the optical bench, etc.). Visiting Astronomers, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation.  相似文献   

7.
VLTI interferometry will allow imaging of galactic and extragalactic sources with milliarcsecond angular resolution. For moderately bright sources the spectral resolution will be of the order of 10000. These capabilities will allow detailed studies of solar system objects, stars, proto-planetary systems and the detection of hot extra-solar planets. The observations of galactic nuclei will allow unprecedented measurements of physical parameters in these systems. VLTI will be a prime instrument to study the immediate environment of the massive black hole at the center of the Milky Way. With the exception of a few `self-referencing' sources the observations of extragalactic nuclei will benefit from an extended capability for simultaneous measurements of nearby reference sources for fringe tracking. With beam combination instruments like AMBER, MIDI, PRIMA, and GENIE the VLTI will reach full maturity at a time when other interferometric instruments at different wavelengths will be fully operational. Most important are ALMA (in the mm- and sub-mm-domain), LOFAR and SKA (in the radio meter to centimeter domain) and of course VLB-networks in the radio, and other – at that time –well developed interferometers in the optical. A major scientific potential of future scientific VLTI programs will lie in an efficient combination of these high angular resolution capabilities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The polarization map from the HST archival data of the imaging polarimetry for NGC 1068 is analyzed. In the HST images, the central few arcsecond region seems to consist of several clumps, and if we extract the polarization of the clumps separately, the viewing angle of each clump can be determined. This enables us to have a three-dimensional view of this central region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The history of solar flare X-ray polarimetry is reviewed and it is shown that as yet, there is no experimental evidence for such polarization. The present experimental limits are at the level of a few percent but these results may be biased by a large thermal component at low energies which may decrease the apparent polarization. To avoid this difficulty it will be necessary to make observations at higher energies where thermal emission is less important.The theoretical estimates of the polarization expected in the solar flare are also reviewed. The best present theoretical estimates are in the range of a few percent and are consistent with the present experimental limits.In this paper we discuss a new satellite instrument that has sufficient sensitivity at high energies to detect the polarization that is predicted by the present theories. The instrument sensitivity for a moderate (M class) event approaches polarization levels of 1% in each of 7 energy bins spanning the 10 to 100 keV range for integration times as short as 10 s. Comparable results can be obtained for an X class flare in 1 s.Presidential Young Investigator.  相似文献   

10.
11.
偏振测量是天文四大测量(光谱,光度,偏振,图像)手段之一,而检偏器是进行天体偏振测量的有力工具之一。通过TCP/IP协议控制步进电机驱动检偏器旋转一定的角度值,通过RS485串行通讯实时读取光电绝对编码器的读数作为检偏器绝对位置的反馈量,从而构成一个闭环控制系统。最终实现了转动误差0.42°,步进角度22.5°,转动范围0°~360°的偏振闭环控制系统,完全满足天体偏振测量的基本要求。  相似文献   

12.
Cosmic microwave background (CMB) polarimetry has the potential to provide revolutionary advances in cosmology. Future experiments to detect the very weak B-mode signal in CMB polarization maps will require unprecedented sensitivity and control of systematic errors. Bolometric interferometry may provide a way to achieve these goals. In a bolometric interferometer (or other adding interferometer), phase shift sequences are applied to the inputs in order to recover the visibilities. Noise is minimized when the phase shift sequences corresponding to all visibilities are orthogonal. We present a systematic method for finding sequences that produce this orthogonality, approximately minimizing both the length of the time sequence and the number of discrete phase shift values required. When some baselines are geometrically equivalent, we can choose sequences that read out those baselines simultaneously, which has been shown to improve the signal-to-noise ratio.  相似文献   

13.
CONICA is an acronym for COudé Near Infrared Camera. It is one of the four currently planned Infrared instruments for ESO's Very Large Telescope (VLT) in Chile. This multimode instrument is to be installed at the Coudé-focus (of Unit Telescope no. 1), where adaptive optics and speckle interferometry will also be available. High angular resolution imaging (to the diffraction limit) will be possible in the 1–5 m range, as well as spectroscopy with low- and medium resolution and polarimetry by means of Wollaston prism and wiregrid analysers. Various softwares are developed for this instrument. One of them: the Simulation Software has a threefold aim: 1. provide the user with feedback information on his/her choices of observational parameters. This is be achieved by displaying the calculated performance and throughput of the combined Source-Atmosphere-Telescope-Camera-Detector system in various formats, such as images, tables, isophotical images ... for point as well as for extended sources (also annular, double, etc.); 2. verify if his expectations are realistic, before actually using CONICA itself. 3. give feedback on the design to the developers of the instrument.On leave from his original institute, now at ESTEC in the ISO-project  相似文献   

14.
Interstellar polarization from aligned dust grains can be measured both in transmission at visible and near-infrared wavelengths and in emission at far-infrared and sub-mm wavelengths. These observations can help predict the behavior of foreground contamination of CMB polarimetry by dust in the Milky Way. Fractional polarization in emission from aligned dust grains will be at the higher range of currently observed values of 4–10%. Away from the galactic plane, fluctuations in Q and U will be dominated by fluctuations in intensity, and less influenced by fluctuations in fractional polarization and position angle.  相似文献   

15.
Kevin P. Reardon 《Solar physics》2006,239(1-2):503-517
We investigate the effects of atmospheric dispersion on observations of the Sun at the ever-higher spatial resolutions afforded by increased apertures and improved techniques. The problems induced by atmospheric refraction are particularly significant for solar physics because the Sun is often best observed at low elevations, and the effect of the image displacement is not merely a loss of efficiency, but the mixing of information originating from different points on the solar surface. We calculate the magnitude of the atmospheric dispersion for the Sun during the year and examine the problems produced by this dispersion in both spectrographic and filter observations. We describe an observing technique for scanning spectrograph observations that minimizes the effects of the atmospheric dispersion while maintaining a regular scanning geometry. Such an approach could be useful for the new class of high-resolution solar spectrographs, such as SPINOR, POLIS, TRIPPEL, and ViSP. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
X-ray polarimetry has great scientific potential and new experiments, such as X-Calibur, PoGOLite, XIPE, and GEMS, will not only be orders of magnitude more sensitive than previous missions, but also provide the capability to measure polarization over a wide energy range. However, the measured spectra depend on the collection area, detector responses, and, in case of balloon-borne experiments, the absorption of X-rays in the atmosphere, all of which are energy dependent. Combined with the typically steep source spectra, this leads to significant biases that need to be taken into account to correctly reconstruct energy-resolved polarization properties. In this paper, we present a method based on an iterative unfolding algorithm that makes it possible to simultaneously reconstruct the energy spectrum and the polarization properties as a function of true photon energy. We apply the method to a simulated X-Calibur data set and show that it is able to recover both the energy spectrum and the energy-dependent polarization fraction.  相似文献   

17.
We present a brief review of polarimetric measurements of solar system objects, both linear and circular, obtained with the FORS1 instrument at the Very Large Telescope VLT over the past years. A number of first and new results have been obtained by using this unique observing mode at an 8 m class telescope, among them polarimetry of faint planetary bodies like near-Earth asteroids, Kuiper Belt objects and cometary nuclei, spectropolarimetry of cometary coma material and of the Earthshine of the Moon (in order to verify that life exists on Earth!). We outline the science cases for planetary polarimetry at a future Extremely Large Telescope ELT and provide high level requirements for polarimetric equipment to be used at the ELTs for the study of the science cases described.  相似文献   

18.
We describe the current French ideas for the instrumentation of the second generation of the VLTI. Instruments concepts addressed include: integrated optics beam combiner, extension of MIDI to a four beam facility, extension of AMBER to the visible and a densified pupil direct imaging beam combiner. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.  相似文献   

20.
We present the largest sample of high-mass star-forming regions observed using submillimetre imaging polarimetry. The data were taken using the Submillimetre Common User Bolometer Array (SCUBA) in conjunction with the polarimeter on the James Clerk Maxwell Telescope (JCMT) in Hawaii. In total, 16 star-forming regions were observed, although some of these contain multiple cores. The polarimetry implies a variety of magnetic field morphologies, with some very ordered fields. We see a decrease in polarization percentage for seven of the cores. The magnetic field strengths estimated for 14 of the cores, using the corrected Chandrasekhar and Fermi (CF) method, range from <0.1 mG to almost 6 mG. These magnetic fields are weaker on these large scales when compared to previous Zeeman measurements from maser emission, implying the role of the magnetic field in star formation increases in importance on smaller scales. Analysis of the alignment of the mean field direction and the outflow directions reveals no relation for the whole sample, although direct comparison of the polarimetry maps suggests good alignment (to at least one outflow direction per source) in seven out of the 15 sources with outflows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号