首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文概述了太阳射电天文学的历史,从早期的失败到1942年Hey对太阳射电波的偶然发现为止.文中讨论了太阳射电研究在米波-十米波、千米-百米波和厘米波所取得的主要进展。同时讨论了与射电爆发共生的耀斑的观测以及用等离子体辐射和回旋同步加速辐射对这些观测所作的解释。从空间对与Ⅲ型爆发有关的等离子振荡和一维电子速度分布的测量,业已证实了用等离子体辐射对观测所作的解释。Ⅲ型爆发的米波-十米波射电日像仪测量和千米-百米波的飞船测量表明,Ⅲ型电子束流是沿着浓密的日冕流和沿着阿基米德螺旋轨道运动的。在厘米波段利用角秒分辨率的大天线阵对活动区和射电爆发所作的高空间分辨率观测,表明了它在观测日冕磁场、了解冕环的物理性质、测量耀斑附近磁场结构,从而在研究太阳耀斑起源方面有着巨大的威力.  相似文献   

2.
全文分三部分:第一部分描述了北京天文台密云工作站的东-西16面天线干涉仪系统(工作频率146兆赫),并将仪器参数的实测结果与理论予期值相比较.第一旁瓣5%,瓣宽5.4.方向瓣在天球上的位置也都与理论预期相差不大.第二部分描述了宁静太阳及其缓变成分的观测.在太阳活动下降期没有发现米波太阳视直径的变化.第三部分分析了 I 型源的观测结果.米波源的高度我们测定在过日心径时为光球之上0.24R☉.检查不同类型噪暴源按日心径的分布,得出随着高度的增加 I 型源的噪暴成分比起连续的增强辐射下降得要迅速.在与光学现象的对应上,噪暴的起始似乎与耀斑的发生的相关性不强.噪暴源却与谱斑区的平均耀斑指数有密切关系.  相似文献   

3.
根据太阳射电观测和统计分析表明,当质子活动区中3厘米的缓变分量流量密度S_3大于25sfu和它对8厘米的缓变分量流量之比S_3/S_8大于1时,活动区发生质子事件的概率很大,本文对这样的质子活动区的缓变频谱作了理论计算和解释。利用磁迥旋辐射机制计算的缓变频谱(SVC)表明:质子活动区中传导流量比宁静区中的大十倍左右,双极黑子的磁场提高了3厘米射电波的迥旋共振层,这是使S_3>25sfu的主要原因。活动区中日冕磁场梯度增大,而使3厘米的迥旋共振吸收的光厚变薄是使S_3/S-8≥1的重要原因。而正是这样的活动区有利于质子事件的产生。  相似文献   

4.
依据卫星和地面的观测数据,分析了峰值流量达到或超过10 000 pfu(1 pfu=1proton.cm~2.s~(-1).sr~(-1))的超强太阳质子事件相伴的太阳耀斑、曰冕物质抛射(CME)驱动激波的曰地传播速度、源区的曰面经度、卡林顿经度以及相伴的磁暴等现象.研究表明,超强太阳质子事件源区的曰面经度范围为E30°Longitude≤W75°.超强太阳质子事件源区分布在2个卡林顿经度带,分别为130°~220°的区域和260°~320°的区域.超强太阳质子事件都伴随着强烈的太阳耀斑和快速CME,CME驱动的激波从太阳到地球的平均速度超过1200 km/s.除一个超强太阳质子事件相伴的磁暴略低于强磁暴外,其余8个都伴有Dst≤-100 nT的强烈磁暴.  相似文献   

5.
根据1991年6月15日发生的微波、分米波、米波、十米波等波段内射电爆发以及质子事件,地磁暴等进行了分析研究,认为产生各种物理过程的有效机制和动因是日冕物质抛射而非太阳耀斑。  相似文献   

6.
根据1991年6月15日发生的微波、分米波、米波、十米波等波段内射电爆发以及质子事件、地磁暴等进行了分析研究,认为产生各种物理过程的有效机制和动因是日冕物质抛射而非太阳耀斑。  相似文献   

7.
本文介绍了76年3月——5月太阳上出现的活动区,是一群回转的电子群,它具有质子耀斑的一些特征。这个活动区发生在太阳活动的宁静时期,它活动所引起的若干地球物理效应在太阳极小期是反常的。  相似文献   

8.
利用云南天文台声光频谱仪在1991年3月记录到的太阳射电米波辐射事件、光学活动及相关事件作了分析,得到来自6538活动区太阳射电米波事件的一些基本特性。  相似文献   

9.
利用云南天文台声光频谱仪在1991年3月记录到的太阳射电米波辐射事件、光学活动及相关事件作了分析,得到来自6538活动区太阳射电米波事件的一些基本特征。  相似文献   

10.
张勤 《天文学进展》2000,18(2):120-127
就太阳质子事件预报研究的重要意义,产生太阳质子事件的太阳活动区的一般特征,质子耀斑的辐射特征,质子事件几个重要参数预报方法简述了目前的研究进展。还给出了当前为满足用户需要改进预报应着重研究的方面。  相似文献   

11.
本文对1970年到1979年的太阳中微子流和太阳活动(太阳黑子、耀斑和质子事件)的数据作最大熵谱分析,并求其互相关函数和初相,得到:太阳中微子流和太阳活动均有11年的长周期;太阳中微子流和太阳质子事件还有共同的近3年、2年和1年左右的周期。太阳中微子流的3年周期占支配地位,质子事件中的3年周期亦占有重要地位。二级以上的耀斑事件亦有近两年的周期。它们的互相关函数和初相表明:太阳中微子流与太阳活动有正相关;对近11年周期的数据,太阳黑子和太阳耀斑相对于太阳中微子均有延迟时间47个月,对质子事件有延迟时间41个月。对于约3年的周期,质子的延迟时间为10个月。结合他人的太阳半径和太阳磁场的测量与分析结果,得到一个符合标准太阳模型中物理过程的太阳中微子流变化与太阳活动间的因果关系,并对这个因果关系的可能机制进行了讨论。  相似文献   

12.
本文阐述了在二十一太阳周期上升相期间太阳黑子、钙谱斑、2800MHz射电流量和太阳耀斑、质子耀斑、质子事件的活动情况。我们的统计结果表明,在这个时段,太阳活动通过三次脉冲性上升达到极大。 本文确定了上升相的活动经度:L160°~210°和L50°~90°。并对最强的活动区进行了讨论。  相似文献   

13.
本文综述了超级活动区AR5395的特征,爆发太阳耀斑的概况以及地球物理效应。这个活动区在所有方面都是引人注目的。它位于高纬,面积罕见,密集,发展变化快,磁结构异常复杂,较大的几个后随极性本影被许多前导极性本影汇围成“U”字形。它通过日面期间,耀斑爆发频繁,其位置远离赤道,许多耀斑都伴随着物质抛射,共产生11个X级、48个M级X射线耀斑事件,引起了两次三级质子事件,其持续时间较  相似文献   

14.
太阳米波射电爆发是活动区上空日冕中的现象,与太阳耀斑有密切关系。近些年来,高空间分辨率的动态频谱仪获得了大量观测资料。在资料分析、理论模型和综合评述等备方面发表了许多文章。在日冕质量抛射和太阳周围磁场相互关系的研究中也取得了很大进展。  相似文献   

15.
我们使用密云“4×16”复合干涉仪跟踪观测太阳(中天前后各三小时),以确定Ⅰ型源的二维位置并分析它的自行。 460 MHz Ⅰ型源通常位于相应黑子群的径向延长线上,偏差不超过0′.5。 我们发现,多数Ⅰ型源不时处于缓慢运动之中,速率为10~5—10~6厘米/秒。凡有自行的Ⅰ型源对应的活动区具有较剧烈的耀斑活动。而无自行的Ⅰ型源对应的活动区,在以源存在日为中心,前后各一天(共三天)内,不出现一级以上耀斑。 我们认为,Ⅰ型源的自行,反映了磁力线管的运动,磁场位形的变化。而这种变化可能与耀斑活动有关。  相似文献   

16.
本文讨论了第廿周1964.10—1972.12.期间太阳质子活动的一些特点,结果给出:第20周质子活动水平的趋势和黑子活动趋势比较一致,和第19周略有不同;在以约80天为间隔的时间序列上,大多数高级别质子事件集中出现在两个时段上;质子活动有集中在某些经度带的趋势,不同经度带上的黑子活动和质子耀斑伴生的射电爆发等具体特点有比较明显的差别;按磁结构将黑子群分成正常和“异常”两类,具有“异常”磁结构的黑子群产生大部分质子耀斑;复杂磁结构的活动区上米波源的出现有利于产生质子耀斑.  相似文献   

17.
林元章 《天文学进展》1995,13(3):185-194
在太阳耀斑区磁场和电流研究方面,文中将着重介绍太阳横向磁场方位的确定,太阳活动区磁场的非热性表示、太阳耀斑前后的活动区磁场变化、以及耀斑核块与活动区纵向电流密度极大点位置的关系等几个重要问题的研究现状。  相似文献   

18.
1991年6月6日我们在太阳6659号活动区观测到了一个白光耀斑.这个白光耀斑伴有强烈的H_α、X射线和射电微波发射.我们对这次自光事件作了初步的分析研究,并对它的总能量作了粗略估计.  相似文献   

19.
本文对1967—1972年期间的资料较完整的18个质子耀斑活动区,作α因子统计。根据大耀斑区中性线扭曲成“S”形的程度来确定无力场因子α。发现1级以上质子耀斑区,耀斑当天α≥0.34,2级以上,α≥0.50,且耀斑发生前1—2天内α因子均有所增长。因此建议用该α因子预报质子耀斑事件。文中还提出挤压无力场大耀斑模式的设想,以更好地解释一些观测事实。  相似文献   

20.
根据近年来地面和空间观测资料的统计分析指出:(1)太阳质子事件(或质子耀斑)的发生同起伏剧烈的强微波爆发(包括脉冲和IVμ型爆发)或短分米波IV型爆发存在着紧密的共生关系(共生率趋近100%);(2)约有24%—30%的质子事件没有对应的II型爆发。这一结果否定了以前认为II型爆发中的激波加速是产生质子事件必要条件的看法,进而论证了产生强微波(脉冲或IV_μ型)爆发的相对论性电子(≥500kev)与质子耀斑中的高能质子(>10MeV)都是在耀斑脉冲相的磁环中受到随机MHD湍动加速作用而产生的。那些逃逸到行星际空间的质子流就构成了太阳质子事件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号