首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
R. Arlt 《Solar physics》2009,255(1):143-153
Digitized images of the drawings by J.C. Staudacher were used to determine sunspot positions for the period 1749 – 1796. From the entire set of drawings, 6285 sunspot positions were obtained for a total of 999 days. Various methods have been applied to find the orientation of the solar disk, which is not given for the vast majority of the drawings by Staudacher. Heliographic latitudes and longitudes in the Carrington rotation frame were determined. The resulting butterfly diagram shows a highly-populated Equator during the first two cycles (cycles 0 and 1 in the usual counting since 1749). An intermediate period is cycle 2, whereas cycles 3 and 4 show a typical butterfly shape. A tentative explanation may be the transient dominance of a quadrupolar magnetic field during the first two cycles.  相似文献   

2.
As shown by statistical results, in the 23rd solar activity cycle the variation of the latitudes of rotating sunspots with time exhibits a butterfly pattern. We have studied the variations with phase for the mean square errors among the 4 fitting curves of the 2 wings of the butterfly diagram of sunspots and the 2 wings of the butterfly diagram of rotating sunspots in the 23rd solar activity cycle. The results show that a systematic time delay exists not only between the northern and southern hemispheres of the butterfly diagram of sunspots, but also between the northern and southern hemispheres of the butterfly diagram of rotating sunspots, even between the butterfly diagrams of the sunspots and rotating sunspots in the same hemisphere. This means that the 23rd-cycle sunspot activities in the northern and southern hemispheres happened not simultaneously, that a systematic time delay or advance (phase difference) exists between the northern and southern hemispheres, that the southern hemisphere lags behind the northern hemisphere, that a phase difference exists between the butterfly diagram of rotating sunspots and the butterfly diagram of sunspots in the 23rd cycle, and that the butterfly diagram of rotating sunspots lags behind that of sunspots. The observed delay is a little less than the theoretical value predicted by the dynamo model.  相似文献   

3.
The reconstruction of the solar activity during some years of the 18th century is poorly known because there are scarce sunspot observations. The aim of this short contribution is to present a “lost” sunspot observation realized by the Portuguese scientist Sanches Dorta during his observation of the solar eclipse of 1785 from Rio de Janeiro (Brazil). This record was not included in the database compiled by Hoyt and Schatten (1998). We present new estimations of the solar activity during 1785. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We experiment with a method of measuring the frequency of solar p modes, intended to extend the passband for the variations of the frequency spectrum as high as possible. So far this passband is limited to a fraction of μ Hz for the classical analysis based on numerical fits of a theoretical line profile to a power spectrum averaged over periods lasting at least several weeks. This limit for the present analysis can be shifted to the mHz range, corresponding to some of the “5 min” oscillations, but in this range we use a lower resolution which allows us to separate odd and even p modes. We show an example of the results for long term variations and apply this analysis to search for a modulation of the p‐mode frequency spectrum by asymptotic series of solar g modes. A faint signal is found in the analysis of 10 years of GOLF data. This very preliminary result possibly indicates the detection of a small number of g modes of degree l = 1. A tentative determination of an observational value of the parameter P0 follows. P0 is the scaling factor of the asymptotic series of g modes and is a key data for solar core physics. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This article reports on solar observations by J.A. Hamilton and W. Gimingham at Armagh Observatory made in 1795–1797. A number of sunspot positions were obtained from the original observing notes, mostly from micrometer measurements. The period is particularly interesting for the understanding of the onset of the Dalton minimum and a possible minor cycle between the Cycles 4 and 5. For the same period, sunspot positions recorded by Staudacher were measured and published in an earlier paper (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We describe solar observations carried out for the first time jointly with Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Aalto University Metshovi Radio Observatory (MRO). KAIRA is new radio antenna array observing the decimeter and meter wavelength range. It is located near Kilpisjärvi, Finland, and operated by the SodankyläGeophysical Observatory, University of Oulu. We investigate the feasibility of KAIRA for solar observations, and the additional benefits of carrying out multi‐instrument solar observations with KAIRA and the MRO facilities, which are already used for regular solar observations. The data measured with three instruments at MRO, and with KAIRA during time period 2014 April–October were analyzed. One solar radio event, measured on 2014 April 18, was studied in detail. Seven solar flares were recorded with at least two of the three instruments at MRO, and with KAIRA during the chosen time period. KAIRA is a great versatile asset as a new Finnish instrument that can also be used for solar observations. Collaboration observations with MRO instruments and KAIRA enable detailed multi‐frequency solar flare analysis. Flare pulsations, flare statistics and radio spectra of single flares can be investigated due to the broad frequency range observations. The Northern locations of both MRO and KAIRA make as long as 15‐hour unique solar observations possible during summer time. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We demonstrate that a simple solar dynamo model, in the form of a Parker migratory dynamo with random fluctuations of the dynamo governing parameters and algebraic saturation of dynamo action, can at least qualitatively reproduce all the basic features of solar Grand Minima as they are known from direct and indirect data. In particular, the model successfully reproduces such features as an abrupt transition into a Grand Minimum and the subsequent gradual recovery of solar activity, as well as mixed-parity butterfly diagrams during the epoch of the Grand Minimum. The model predicts that the cycle survives in some form during a Grand Minimum, as well as the relative stability of the cycle inside and outside of a Grand Minimum. The long-term statistics of simulated Grand Minima appears compatible with the phenomenology of the Grand Minima inferred from the cosmogenic isotope data. We demonstrate that such ability to reproduce the Grand Minima phenomenology is not a general feature of the dynamo models but requires some specific assumption, such as random fluctuations in dynamo governing parameters. In general, we conclude that a relatively simple and straightforward model is able to reproduce the Grand Minima phenomenology remarkably well, in principle providing us with a possibility of studying the physical nature of Grand Minima.  相似文献   

9.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present the data concerning the distribution of various sunspot magnetic classes over the solar butterfly diagram and discuss how this data can inform solar dynamo models. We use the statistics of sunspots that violate the Hale polarity law to estimate the ratio of the fluctuating and mean components of the toroidal magnetic field inside the solar convective zone. An analysis of the spatial distribution of bipolar, unipolar and complex sunspot groups in the context of simple dynamo models results in the conclusion that the mean toroidal field is relatively simple and maintains its shape during the course of the solar cycle (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Solar cycle according to mean magnetic field data   总被引:1,自引:0,他引:1  
To investigate the shape of the solar cycle, we have performed a wavelet analysis of the large–scale magnetic field data for 1960–2000 for several latitudinal belts and have isolated the following quasi-periodic components: ∼22, 7 and 2 yr. The main 22-yr oscillation dominates all latitudinal belts except the latitudes of ±30° from the equator. The butterfly diagram for the nominal 22-yr oscillation shows a standing dipole wave in the low-latitude domain  (∣θ∣≤ 30°)  and another wave in the sub-polar domain  (∣θ∣≥ 35°)  , which migrates slowly polewards. The phase shift between these waves is about π. The nominal 7-yr oscillation yields a butterfly diagram with two domains. In the low-latitude domain  (∣θ∣≤ 35°)  , the dipole wave propagates equatorwards and in the sub-polar region, polewards. The nominal 2-yr oscillation is much more chaotic than the other two modes; however the waves propagate polewards whenever they can be isolated.
We conclude that the shape of the solar cycle inferred from the large-scale magnetic field data differs significantly from that inferred from sunspot data. Obviously, the dynamo models for a solar cycle must be generalized to include large-scale magnetic field data. We believe that sunspot data give adequate information concerning the magnetic field configuration deep inside the convection zone (say, in overshoot later), while the large-scale magnetic field is strongly affected by meridional circulation in its upper layer. This interpretation suggests that the poloidal magnetic field is affected by the polewards meridional circulation, whose velocity is comparable with that of the dynamo wave in the overshoot layer. The 7- and 2-yr oscillations could be explained as a contribution of two sub-critical dynamo modes with the corresponding frequencies.  相似文献   

12.
We present a brief review of predictions of solar cycle maximum amplitude with a lead time of 2 years or more. It is pointed out that a precise prediction of the maximum amplitude with such a lead-time is still an open question despite progress made since the 1960s. A method of prediction using statistical characteristics of solar cycles is developed: the solar cycles are divided into two groups, a high rising velocity (HRV) group and a low rising velocity (LRV) group, depending on the rising velocity in the ascending phase for a given duration of the ascending phase. The amplitude of Solar Cycle 24 can be predicted after the start of the cycle using the formula derived in this paper. Now, about 5 years before the start of the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximum amplitude.  相似文献   

13.
We present the sunspot ideas and observations of the 18th century Portuguese scholar Teodoro de Almeida (1722 – 1804) and Mexican scientist José Antonio Alzate (1737 – 1799). We describe the implications of dating a single sunspot observation performed by Almeida in the early 1760s, during the maximum of cycle number 1. A possible solar cycle peak in 1760 (instead of 1761) is investigated. We present several observations of sunspots obtained by Alzate during 1769 (partially associated with the Venus and Mercury transits) and also on 20 July 1786. We estimate 100±34 as the Group Sunspot Number for this date. These records were unknown and, therefore, not included in the database compiled by Hoyt and Schatten (1998).  相似文献   

14.
We present a verification of the short-term predictions of solar Xray bursts for the maximum phase (2000-2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA.  相似文献   

15.
Reviews of long-term predictions of solar cycles have shown that a precise prediction with a lead time of 2 years or more of a solar cycle remains an unsolved problem. We used a simple method, the method of similar cycles, to make long-term predictions of not only the maximum amplitude but also the smoothed monthly mean sunspot number for every month of Solar Cycle 23. We verify and compare our prediction with the latest available observational results.  相似文献   

16.
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.  相似文献   

17.
R. Arlt 《Solar physics》2008,247(2):399-410
Original drawings by J.C. Staudacher made in the period of 1749 – 1796 were digitized. The drawings provide information about the size of the sunspots and are therefore useful for analyses sensitive to sunspot area rather than Wolf numbers. The total sunspot area as a function of time is shown for the observing period. The sunspot areas measured do not support the proposition of a weak, “lost” cycle between cycles 4 and 5. We also evaluate the usefulness of the drawings for the determination of sunspot positions for future studies.  相似文献   

18.
Hinode is an observatory‐style satellite, carrying three advanced instruments being designed and built to work together to explore the physical coupling between the photosphere and the upper layers for understanding the mechanism of dynam‐ ics and heating. The three instruments aboard are the Solar Optical Telescope (SOT), which can provide high‐precision photometric and polarimetric data of the lower atmosphere in the visible light (388–668 nm) with a spatial resolution of 0.2–0.3 arcseconds, the X‐Ray Telescope (XRT) which takes a wide field of full sun coverage X‐ray images being capable of diagnosing the physical condition of coronal plasmas, and the EUV Imaging Spectrometer (EIS) which observes the upper transition region and coronal emission lines in the wavelength ranges of 17–21 nm and 25–29 nm. Since first‐light observations in the end of October 2006, Hinode has been continuously providing unprecedented high‐quality solar data. We will present some new findings of the sun with Hinode, focusing on those from SOT (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this study, we look for the mid‐term variations in the daily average data of solar radius measurements made at the Solar Astrolabe Station of TUBITAK National Observatory (TUG) during solar cycle 23 for a time interval from 2000 February 26 to 2006 November 15. Due to the weather conditions and seasonal effect dependent on the latitude, the data series has the temporal gaps. For spectral analysis of the data series, thus, we use the Date Compensated Discrete Fourier Transform (DCDFT) and the CLEANest algorithm, which are powerful methods for irregularly spaced data. The CLEANest spectra of the solar radius data exhibit several significant mid‐term periodicities at 393.2, 338.9, 206.5, 195.2, 172.3 and 125.4 days which are consistent with periods detected in several solar time series by several authors during different solar cycles. The knowledge relating to the origin of solar radius variations is not yet present. To see whether these variations will repeat in next cycles and to understand how the amplitudes of such variations change with different phases of the solar cycles, we need more systematic efforts and the long‐term homogeneous data. Since most of the periodicities detected in the present study are frequently seen in solar activity indicators, it is thought that the physical mechanisms driving the periodicities of solar activity may also be effective in solar radius variations (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Most of our knowledge about the Sun's activity cycle arises from sunspot observations over the last centuries since telescopes have been used for astronomy. The German astronomer Gustav Spörer observed almost daily the Sun from 1861 until the beginning of 1894 and assembled a 33‐year collection of sunspot data covering a total of 445 solar rotation periods. These sunspot drawings were carefully placed on an equidistant grid of heliographic longitude and latitude for each rotation period, which were then copied to copper plates for a lithographic reproduction of the drawings in astronomical journals. In this article, we describe in detail the process of capturing these data as digital images, correcting for various effects of the aging print materials, and preparing the data for contemporary scientific analysis based on advanced image processing techniques. With the processed data we create a butterfly diagram aggregating sunspot areas, and we present methods to measure the size of sunspots (umbra and penumbra) and to determine tilt angles of active regions. A probability density function of the sunspot area is computed, which conforms to contemporary data after rescaling. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号