首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. A power-law fit to ring diameters (Dring) and rim-crest diameters (Dr) of peak-ring basins on the Moon [Dring = 0.14 ± 0.10(Dr)1.21±0.13] reveals a trend that is very similar to a power-law fit to peak-ring basin diameters on Mercury [Dring = 0.25 ± 0.14(Drim)1.13±0.10] [Baker, D.M.H. et al. [2011]. Planet. Space Sci., in press]. Plots of ring/rim-crest ratios versus rim-crest diameters for peak-ring basins and protobasins on the Moon also reveal a continuous, nonlinear trend that is similar to trends observed for Mercury and Venus and suggest that protobasins and peak-ring basins are parts of a continuum of basin morphologies. The surface density of peak-ring basins on the Moon (4.5 × 10−7 per km2) is a factor of two less than Mercury (9.9 × 10−7 per km2), which may be a function of their widely different mean impact velocities (19.4 km/s and 42.5 km/s, respectively) and differences in peak-ring basin onset diameters. New calculations of the onset diameter for peak-ring basins on the Moon and the terrestrial planets re-affirm previous analyses that the Moon has the largest onset diameter for peak-ring basins in the inner Solar System. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.  相似文献   

2.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

3.
Shock-induced melting and vaporization of H2O ice during planetary impact events are widespread phenomena. Here, we investigate the mass of shock-produced liquid water remaining within impact craters for the wide range of impact conditions and target properties encountered in the Solar System. Using the CTH shock physics code and the new 5-phase model equation of state for H2O, we calculate the shock pressure field generated by an impact and fit scaling laws for melting and vaporization as a function of projectile mass, impact velocity, impact angle, initial temperature, and porosity. Melt production nearly scales with impact energy, and natural variations in impact parameters result in only a factor of two change in the predicted mass of melt. A fit to the π-scaling law for the transient cavity and transient-to-final crater diameter scaling are determined from recent simulations of the entire cratering process in ice. Combining melt production with π-scaling and the modified Maxwell Z-model for excavation, less than half of the melt is ejected during formation of the transient crater. For impact energies less than about 2 × 1020 J and impact velocities less than about 5 km s−1, the remaining melt lines the final crater floor. However, for larger impact energies and higher impact velocities, the phenomenon of discontinuous excavation in H2O ice concentrates the impact melt into a small plug in the center of the crater floor.  相似文献   

4.
We describe and interpret a series of previously unidentified glacial-like lobes (34-43°N; 107-125°E) that were discovered as part of a survey of large (D > 5 km) impact craters in Utopia Planitia, one of the great northern plains of Mars. The lobes have characteristics that are consistent with a glacial origin. Evidence includes curvilinearity of form, lineations and ridges, and surface textures that are thought to form by the sublimation of near-surface volatiles. The lobes display morphologies that range from wedge-shaped to near-circular to elongate. The flow directions are towards the northern walls in the case of craters with large single lobes, and in all directions in the case of the largest (D > 30 km) craters. Concentric crater fill is also interspersed within craters of our study region, with such craters having much higher filling rates than those with flow lobes. We suggest that the impact crater population in south-west Utopia Planitia demonstrates a spectrum of glacial modifications, from low levels of filling in the case of craters with elongate lobes at one extreme, to concentric crater fill in highly-filled craters at the other.  相似文献   

5.
Candidate examples of impact melt flows and debris flows have been identified at Tooting crater, an extremely young (<2 Myr), 29 km diameter impact crater in Amazonis Planitia, Mars. Using HiRISE and CTX images, and stereo-derived digital elevation models derived from these images, we have studied the rim and interior wall of Tooting crater to document the morphology and topography of several flow features in order to constrain the potential flow formation mechanisms. Four flow types have been identified; including possible impact melt sheets and three types of debris flows. The flow features are all located within 2 km of the rim crest on the southern rim or lie on the southern interior wall of the crater ∼1500 m below the rim crest. Extensive structural failure has modified the northern half of the crater inner wall and we interpret this to have resulted in the destruction of any impact melt emplaced, as well as volatile-rich wall rock. The impact melt flows are fractured on the meter to decameter scale, have ridged, leveed lobes and flow fronts, and cover an area >6 km × 5 km on the southern rim. The debris flows are found on both the inner wall and rim of the crater, are ∼1-2 km in length, and vary from a few tens of meters to >300 m in width. These flows exhibit varying morphologies, from a channelized, leveed flow with arcuate ridges in the channel, to a rubbly flow with a central channel but no obvious levees. The flows indicate that water existed within the target rocks at the time of crater formation, and that both melt and fluidized sediment was generated during this event.  相似文献   

6.
The SMART-1 lunar impact   总被引:1,自引:0,他引:1  
The SMART-1 spacecraft impacted the Moon on 3rd September 2006 at a speed of 2 km s−1 and at a very shallow angle of incidence (∼1°). The resulting impact crater is too small to be viewed from the Earth; accordingly, the general crater size and shape have been determined here by laboratory impact experiments at the same speed and angle of incidence combined with extrapolating to the correct size scale to match the SMART-1 impact. This predicts a highly asymmetric crater approximately 5.5-26 m long, 1.9-9 m wide, 0.23-1.5 m deep and 0.71-6.9 m3 volume. Some of the excavated mass will have gone into crater rim walls, but 0.64-6.3 m3 would have been ejecta on ballistic trajectories corresponding to a cloud of 2200-21,800 kg of lunar material moving away from the impact site. The shallow Messier crater on the Moon is similarly asymmetric and is usually taken as arising from a highly oblique impact. The light flash from the impact and the associated ejecta plume were observed from Earth, but the flash magnitude was not obtained, so it is not possible to obtain the luminous efficiency of the impact event.  相似文献   

7.
MESSENGER’s Mercury Dual Imaging System (MDIS) obtained multispectral images for more than 80% of the surface of Mercury during its first two flybys. Those images have confirmed that the surface of Mercury exhibits subtle color variations, some of which can be attributed to compositional differences. In many areas, impact craters are associated with material that is spectrally distinct from the surrounding surface. These deposits can be located on the crater floor, rim, wall, or central peak or in the ejecta deposit, and represent material that originally resided at depth and was subsequently excavated during the cratering process. The resulting craters make it possible to investigate the stratigraphy of Mercury’s upper crust. Studies of laboratory, terrestrial, and lunar craters provide a means to bound the depth of origin of spectrally distinct ejecta and central peak structures. Excavated red material (RM), with comparatively steep (red) spectral slope, and low-reflectance material (LRM) stand out prominently from the surrounding terrain in enhanced-color images because they are spectral end-members in Mercury’s compositional continuum. Newly imaged examples of RM were found to be spectrally similar to the relatively red, high-reflectance plains (HRP), suggesting that they may represent deposits of HRP-like material that were subsequently covered by a thin layer (∼1 km thick) of intermediate plains. In one area, craters with diameters ranging from 30 km to 130 km have excavated and incorporated RM into their rims, suggesting that the underlying RM layer may be several kilometers thick. LRM deposits are useful as stratigraphic markers, due to their unique spectral properties. Some RM and LRM were excavated by pre-Tolstojan basins, indicating a relatively old age (>4.0 Ga) for the original emplacement of these deposits. Detailed examination of several small areas on Mercury reveals the complex nature of the local stratigraphy, including the possible presence of buried volcanic plains, and supports sequential buildup of most of the upper ∼5 km of crust by volcanic flows with compositions spanning the range of material now visible on the surface, distributed heterogeneously across the planet. This emerging picture strongly suggests that the crust of Mercury is characterized by a much more substantial component of early volcanism than represented by the phase of mare emplacement on Earth’s Moon.  相似文献   

8.
Radar imaging results for Mercury's non-polar regions are presented. The dual-polarization, delay-Doppler images were obtained from several years of observations with the upgraded Arecibo S-band (λ12.6-cm) radar telescope. The images are dominated by radar-bright features associated with fresh impact craters. As was found from earlier Goldstone-VLA and pre-upgrade Arecibo imaging, three of the most prominent crater features are located in the Mariner-unimaged hemisphere. These are: “A,” an 85-km-diameter crater (348° W, 34° S) whose radar ray system may be the most spectacular in the Solar System; “B,” a 95-km-diameter crater (343° W, 58° N) with a very bright halo but less distinct ray system; and “C,” an irregular feature with bright ejecta and rays distributed asymmetrically about a 125-km source crater (246° W, 11° N). Due south of “C” lies a “ghost” feature (242° W, 27° S) that resembles “A” but is much fainter. An even fainter such feature is associated with Bartok Crater. These may be two of the best mercurian examples of large ejecta/ray systems observed in an intermediate state of degradation. Virtually all of the bright rayed craters in the Mariner 10 images show radar rays and/or bright rim rings, with radar rays being less common than optical rays. Radar-bright craters are particularly common in the H-7 quadrangle. Some diffuse radar albedo variations are seen that have no obvious association with impact ejecta. In particular, some smooth plains regions such as the circum-Caloris plains in Tir, Budh, and Sobkou Planitiae and the interiors of Tolstoj and “Skinakas” basins show high depolarized brightness relative to their surroundings, which is the reverse of the mare/highlands contrast seen in lunar radar images. Caloris Basin, on the other hand, appears dark and featureless in the images.  相似文献   

9.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

10.
Analysis of the Chandrayaan-1 Terrain Mapping Camera image of a 20 km×27 km area in the Mare Imbrium region revealed a cluster of thousands of fresh and buried impact craters in the size range of 20-1300 m. A majority of the large fresh craters with diameter ranging from 160 to 1270 m exhibit near-circular mounds (30-335 m diameter and 10-40 m height) in the crater floor, and their size depends on the host crater size. The origin of this cluster of secondary craters may be traced to Copernicus crater, based on global lunar image and the analysis of Chandrayaan-1 Hyper Spectral Imager data. Our findings provide further evidence for secondary crater formation by low-velocity impact of a cloud of clustered fragments. The presence of central mounds can also distinguish the secondary craters from the primary craters and refine the chronology of lunar surface based on counting of small craters.  相似文献   

11.
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to λ0 = 199.5 ± 0.5° and β0 = 39.8 ± 5° in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps, P., Marchis, F., Michalowski, T., Vachier, F., Colas, F., Berthier, J., Assafin, M., Dunckel, P.B., Polinska, M., Pych, W., Hestroffer, D., Miller, K., Vieira-Martins, R., Birlan, M., Teng-Chuen-Yu, J.-P., Peyrot, A., Payet, B., Dorseuil, J., Léonie, Y., Dijoux, T., 2007. Figure of the double Asteroid 90 Antiope from AO and lightcurves observations. Icarus 187, 482-499). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the “shoulders” of the lightcurves. The bulk density was then recomputed to 1.28 ± 0.04 g cm−3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (∼50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ∼17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.  相似文献   

12.
Previous analyses of Galileo images showed the small (≈1 km and smaller) crater population on Callisto to be lower than had been expected (Moore, J.M. et al. [1999]. Icarus 140, 294-312; Bierhaus E.B. et al. [2000]. Lunar Planet. Sci. 31. Abstract #1996). In this paper we examine the small crater population using high-resolution imagery from Callisto flybys during Galileo orbits C3, C10, C21, and C30, including several C30 regions not previously analyzed. Our findings confirm that most small craters are depleted relative to a presumed equilibrium of R = 0.22, and we find that there is significant variability in the small crater counts. While some of the variability in the small crater population on Callisto can be attributed to secondary cratering, some variability also may be explained by resetting of portions of Callisto’s surface by larger impactors. This is expected where the differential size frequency distribution of the crater production population b < 3 (where b represents the exponent of a differential power-law crater-size distribution), such that large impacts affect a greater planetary surface area than smaller craters.  相似文献   

13.
The 455 Ma old Lockne crater in central Sweden is a well-preserved and accessible instance of marine impact crater. The process of formation of the over 7 km wide crater (referred to as inner crater) in crystalline Proterozoic basement is numerically modeled under the assumption of a 45° oblique impact of an asteroid-like impactor. The 3D version of the SOVA multi-material hydrocode is used to model the shock wave propagation through the target, transient crater growth, material ejection in water and basement target, and water and fragmented rock ejecta expansion. The model results in a crater formation with the greatest ejection and melting transferred in the downrange direction. The model reproduces the growth of the water crater accompanied by the growth of a “wall” of ejected water at its outer margin. The basement ejecta are mostly trapped in this transient “water wall”. Only the largest ejected rock fragments could break through this water wall and thus reach distances farther than about 6 km from the center of the target. The model predicts approximately of impact melt formation, less than 10% of which is ejected outside of the inner (basement) crater, whereas the rest is reckoned to have remained within the inner crater. We assume that most of the ejected melt occurs as sand-sized fragments in the resurge sediments that formed subsequent to the collapse of the water crater that resulted in the powerful backflow of water. The model results are in accordance with several important details of the known geology of the crater. The model also outlines the difference in the marine crater formation processes in contrast to a crater with similar size formed on land.  相似文献   

14.
A rare, but normal, astronomical event occurred on November 9th 2006 (JST) as Mercury passed in front of the Sun from the perspective of the Earth. The abundance of the sodium vapor above the planet limb was observed by detecting an excess absorption in the solar sodium line D1 during this event. The observation was performed with a 10-m spectrograph of Czerny-Turnar system at Domeless Solar Tower Telescope at the Hida Observatory in Japan. The excess absorption was red-shifted by 10 pm relative to the solar line, and was measured at the dawnside (eastside) and duskside (westside) of Mercury. Between the dawn and dusksides, an asymmetry of total sodium abundance was clearly identified. At the dawnside, the total sodium column density was 6.1×1010 Na atoms/cm2, while it was 4.1×1010 Na atoms/cm2 at the duskside. The investigation of dawn-dusk asymmetry of the sodium exosphere of Mercury is a clue to understand the release mechanism of sodium from the surface rock. Our result suggests that a thermal desorption is a main source process for sodium vapor in the vicinity of Mercury.  相似文献   

15.
S. Bouley  R.A. Craddock 《Icarus》2010,207(2):686-698
Martian valley networks provide the best evidence that the climate on Mars was different in the past. Although these features are located primarily in heavily cratered terrain of Noachian age (>3.7 Ga), the ages of the features and the time when they were active is not well understood. From superposed craters several recent global studies determined that most valley networks formed during the Late Noachian to Early Hesperian; however, there were some disparities between the techniques. In this study, our principal objective was to test the reliability of the different age-dating techniques to better understand their accuracy and limitations. We applied these techniques to Parana Valles using a variety of high-resolution images taken from different instruments that allow us to identify smaller craters (D > 125 m) while providing sufficient coverage to support a statistically reliable sampling of crater populations, which is necessary to reduce the uncertainties in age determination. Our results indicate that Parana Valles formed during the Early Hesperian Period but that the crater density (D > 353 m) is heterogeneous inside the Parana Valles basin. The crater population decreases from the headwaters downstream recording a resurfacing event that is most likely related to the erosion of downstream sub-basins. The terrain near the source area is Late Noachian to Early Hesperian in age while terrains closer to the outlet are Early to Late Hesperian in age. Crater densities (D > 125 m) inside the valley are also heterogeneous and record several resurfacing events on the valley floor. Where the width of the valley network narrows to <2 km we found evidence of an Amazonian age eolian deposit that is a relatively thin layer of only few meters that was probably deposited as a result of topographic influences. Our results validate the reliability of several proposed age-dating techniques, but we also determined the accuracy and applicability of these techniques. Our results also demonstrate that crater populations can be used to not only determine the relative ages of valley networks, but also to map the distribution of sedimentary materials and the extent of resurfacing events that occurred after valley network formation.  相似文献   

16.
We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury’s sodium exosphere. The distribution of sodium in Mercury’s exosphere during the period January 12-15, 2008, was mapped using the McMath-Pierce solar telescope with the 5″ × 5″ image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury’s anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD, but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization. We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 × 106 cm−2 s−1. The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.  相似文献   

17.
The 90 km diameter, late Triassic Manicouagan impact structure of Québec, Canada, is a well-preserved, undeformed complex crater possessing an anorthositic central uplift and a 55 km diameter melt sheet. As such, it provides a valuable terrestrial analogue for impact structures developed on other planetary bodies, especially the Moon and Mars, which are currently the focus of exploration initiatives. The scientific value of Manicouagan has recently been enhanced due to the production, between 1994 and 2006, of ∼18 km of drill core from 38 holes by the mineral exploration industry. Three of these holes are in excess of 1.5 km deep, with the deepest reaching 1.8 km. Here we combine recent field work, sampling and the drill core data with previous knowledge to provide insight into processes occurring at Manicouagan and, by inference, within extraterrestrial impact structures. Four areas of comparative planetology are discussed: impact melt sheets, central uplifts, impact-generated hydrothermal regimes and footwall breccias. Human training and instrument testing opportunities are also considered. The drill core reveals that the impact melt and clast-bearing impact melts in the centre of the structure reach thicknesses of 1.4 km. The 1.1 km thick impact melt has undergone differentiation to yield a lower monzodiorite, a transitional quartz monzodiorite and an upper quartz monzonite sequence. This calls into question the previous citing of Manicouagan as an exemplar of a relatively large crater possessing an undifferentiated melt sheet, which was used as a rationale for assigning different composition lunar impact melts and clast-bearing impact melts to separate cratering events. The predominantly anorthositic central uplift at Manicouagan is comparable to certain lunar highlands material, with morphometric analogies to the King, Tycho, Pythagoras, Jackson, and Copernicus impact structures, which have similar diameters and uplift structure. Excellent exposure of the Manicouagan uplift facilitates mapping and an appraisal of its formation and collapse mechanisms, enhanced by drill core data from the centre of the structure. Recent field studies at the edge of the central island at Manicouagan, and multiple drill core sections through footwall lithologies, provide insight into allochthonous (clastic and suevitic) and autochthonous breccia formation, as well as shock effects. The hydrothermal regimes developed at Manicouagan are akin to systems proposed for Noachian (>3.5 Ga) Mars that involve alteration of impact melts via meteoritic and surface waters, with the generation of phyllosilicates, zeolites, hematite, sulfates and sulfides that can contribute to martian soil formation and sedimentation processes.  相似文献   

18.
19.
The MESSENGER spacecraft flyby of Mercury on 14 January 2008 provided a new opportunity to study the intrinsic magnetic field of the innermost planet and its interaction with the solar wind. The model presented in this paper is based on the solution of the three-dimensional, bi-fluid equations for solar wind protons and electrons in the absence of mass loading. In this study we provide new estimates of Mercury’s intrinsic magnetic field and the solar wind conditions that prevailed at the time of the flyby. We show that the location of the boundary layers and the strength of the magnetic field along the spacecraft trajectory can be reproduced with a solar wind ram pressure Psw = 6.8 nPa and a planetary magnetic dipole having a magnitude of 210 RM3 − nT and an offset of 0.18 RM to the north of the equator, where RM is Mercury’s radius. Analysis of the plasma flow reveals the existence of a stable drift belt around the planet; such a belt can account for the locations of diamagnetic decreases observed by the MESSENGER Magnetometer. Moreover, we determine that the ion impact rate at the northern cusp was four times higher than at the southern cusp, a result that provides a possible explanation for the observed north-south asymmetry in exospheric sodium in the neutral tail.  相似文献   

20.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号