首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
VLBI (Very Long Baseline Interferometry)技术观测卫星需要对干涉测量数据进行相关和后处理,通过相关、时延校准、条纹搜索,最终得到卫星的基线几何时延.基于天文开源软件建立起一套卫星干涉测量数据处理系统.该系统可工作在实时和事后两种状态,实现相关、中性大气、电离层、钟模型以及仪器硬件的时延校准、条纹搜索、生成基线时延和时延率序列.使用该系统处理北斗GEO (Geosynchronous Earth Orbit)卫星的干涉测量试验数据,得到了精度在1–2 ns量级的卫星基线时延序列.  相似文献   

2.
We present a numerical analysis of free-space propagation of the beams inside a long-baseline optical/infrared interferometer. Unlike the models of beam propagation used in most previous studies, our analysis incorporates the effects of atmospheric seeing on the wavefronts entering the interferometer. We derive results for the changes in throughput, coherence loss and fringe-detection signal-to-noise ratio arising from diffraction along the propagation path. Our results for conditions of moderate seeing show that although the flux throughput decreases with propagation distance for a given beam diameter, the fringe contrast increases at the same time. In this case it becomes possible for diffraction to increase the signal-to-noise ratio of the fringe measurements. Previous studies have only considered an arrangement where all the apertures in the beam-propagation system have the same diameter. If the light at the end of the propagation path is collected with a fixed size aperture, we find that in many cases the signal-to-noise ratio for fringe detection is maximized when the initial beam diameter is approximately 30 per cent smaller than the final collector diameter. We discuss the implications of our results in the context of future interferometer designs.  相似文献   

3.
This paper presents a study of the atmospheric refraction and its effect on the light coupling efficiency in an instrument using single-mode optical fibres. We show the analytical approach which allowed us to assess the need to correct the refraction in J and H bands while observing with an 8-m Unit Telescope. We then developed numerical simulations to go further in calculations. The hypotheses on the instrumental characteristics are those of AMBER (Astronomical Multi BEam combineR), the near-infrared focal beam combiner of the Very Large Telescope Interferometric mode, but most of the conclusions can be generalized to other single-mode instruments. We used the software package caos to take into account the atmospheric turbulence effect after correction by the European Southern Observatory system Multi-Application Curvature Adaptive Optics. The optomechanical study and design of the system correcting the atmospheric refraction on AMBER is then detailed. We showed that the atmospheric refraction becomes predominant over the atmospheric turbulence for some zenith angles z and spectral conditions: for z larger than 30° in J band for example. The study of the optical system showed that it allows to achieve the required instrumental performance in terms of throughput in J and H bands. First observations in J band of a bright star, α Cir star, at more than 30° from zenith clearly showed the gain to control the atmospheric refraction in a single-mode instrument, and validated the operating law.  相似文献   

4.
In stellar interferometers, the fast-steering mirror (FSM) is widely utilized to correct the wavefront tilt caused by the atmospheric turbulence and internal instrumental vibration, because of its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and the actuator deflection axis introduced by the manufacturing, assembly, and adjustment is analyzed systematically. Via a numerical method, the additional optical path difference (OPD) caused by the above factors is studied, and its effect on the fringe tracking accuracy of a stellar interferometer is also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors for the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by a laboratory experiment. The results show that after the correction of fast-steering mirror, the starlight parallelism meets preliminarily the requirement of a stellar interferometer on the wavefront tilt.  相似文献   

5.
In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi‐conjugate adaptive optics are integrated in the optical path. The system will have the possibility to correct for the diurnal variation of the distance to the turbulence layers, by using several deformable mirrors, conjugated at different heights. The present optical design of the telescope distributes the optical elements along the optical path in such a way that the instrumental polarization induced by the telescope is minimized and independent of the solar elevation and azimuth. This property represents a large advantage for polarimetric measurements. The ensemble of instruments that are planned is also presented (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This article describes the considerations which led to the current optical design of the new 1.5 m solar telescope GREGOR. The result is Gregorian design with two real foci in the optical train. The telescope includes a relay optic with a pupil image used by a high order adaptive optics system (AO). The optical design is described in detail and performance characteristics are given. Finally we show some verification results which prove that – without atmospheric effects – the completed telescope reaches a diffraction limited performance (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Intensity interferometry removes the stringent requirements on mechanical precision and atmospheric corrections that plague all amplitude interferometry techniques at the cost of severely limited sensitivity. A new idea we recently introduced, very high redundancy, alleviates this problem. It enables the relatively simple construction (∼1 cm mechanical precision) of a ground-based astronomical facility able to transform a two-dimensional field of point-like sources to a three-dimensional distribution of microarcsec resolved systems, each imaged in several optical bands. Each system will also have its high-resolution residual timing, high-quality (inside each band) spectra and light curve, emergent flux, effective temperature, polarization effects and perhaps some thermodynamic properties, all directly measured. All the above attributes can be measured in a single observation run of such a dedicated facility. We conclude that after three decades of abandonment, optical intensity interferometry deserves another review, also as a ground-based alternative to the science goals of space interferometers.  相似文献   

8.
In the optical observation of space objects, multiple measurements often occur in the tracking gate, which brings about the uncertainty of tracking measurement and the reduction of tracking accuracy, causes the instability along the tracking path, and eventually leads to the interruption of tracking and the loss of the target. A new approach, combining the Kalman filter and probabilistic data association, is proposed in this paper for the adaptive tracking of space objects. In this method, the gate of association is predicted by the Kalman filter, while the equivalent measurement obtained from the probabilistic data association is adopted as an effective feed. The experiments show that this technique can effectively improve the tracking accuracy as well as the robustness for the automatic tracking of space objects.  相似文献   

9.
Observation made at low evelation angles is the trend of development of GPS (Global Positioning System) meteorology, wherein the development of highly accurate atmospheric hydrostatic delay corrections at low elevating angles is the main key technique. The comparison among three methods for calculating the atmospheric hydrostatic delay correction of the radio waves from space to the ground-based receiver is made: (1) the atmospheric hydrostatic delay obtained from the path integration of the sounding balloon data under the assumption of atmospheric spherical symmetry, (2) the atmospheric hydrostatic delay acquired from the reanalyzed data of the NCEP (National Centers for Environmental Prediction) under the assumption of atmospheric spherical symmetry and (3) the atmospheric hydrostatic delay got from Niell's atmospheric hydrostatic mapping function. The results of the comparison of them with the atmospheric hydrostatic mapping function obtained from the calculation carried out by taking advantage of the data acquired at 89 sounding balloon stations in China in 2001 show that the accuracy of the method of the path integration of the reanalyzed data of NCEP at low elevating angles (bellow 5°) is about 5 times better than that of the Niell mapping function model.  相似文献   

10.
Equipped with a suitable optical relay system, telescopes employing low-cost fixed primary mirrors could point and track while delivering high-quality images to a fixed location. Such an optical tracking system would enable liquid-mirror telescopes to access a large area of sky and employ infrared detectors and adaptive optics. Such telescopes could also form the elements of an array in which light is combined either incoherently or interferometrically. Tracking of an extended field requires correction of all aberrations including distortion, field curvature and tilt. A specific design is developed that allows a 10-m liquid-mirror telescope to track objects for as long as 30 min and to point as far as 4° from the zenith, delivering a distortion-free diffraction-limited image to a stationary detector, spectrograph or interferometric beam combiner.  相似文献   

11.
We describe a multi-order spectrograph concept suitable for 8-m class telescopes, using the intrinsic spectral resolution of superconducting tunnelling junction detectors to sort the spectral orders. The spectrograph works at low orders, 1–5 or 1–6, and provides spectral coverage with a resolving power of   R ≃ 8000  from the atmospheric cut-off at 320 nm to the long-wavelength end of the infrared H or K band at 1800 nm or 2400 nm. We calculate that the spectrograph would provide substantial throughput and wavelength coverage, together with high time resolution and sufficient dynamic range. The concept uses currently available technology, or technologies with short development horizons, restricting the spatial sampling to two linear arrays; however, an upgrade path to provide more spatial sampling is identified. All of the other challenging aspects of the concept – the cryogenics, thermal baffling and magnetic field biasing – are identified as being feasible.  相似文献   

12.
Slope Detection and Ranging (SLODAR) is a technique for the measurement of the vertical profile of atmospheric optical turbulence strength. Its main applications are astronomical site characterization and real-time optimization of imaging with adaptive optical correction. The turbulence profile is recovered from the cross-covariance of the slope of the optical phase aberration for a double star source, measured at the telescope with a wavefront sensor (WFS). Here, we determine the theoretical response of a SLODAR system based on a Shack–Hartmann WFS to a thin turbulent layer at a given altitude, and also as a function of the spatial power spectral index of the optical phase aberrations. Recovery of the turbulence profile via fitting of these theoretical response functions is explored. The limiting resolution in altitude of the instrument and the statistical uncertainty of the measured profiles are discussed. We examine the measurement of the total integrated turbulence strength (the seeing) from the WFS data and, by subtraction, the fractional contribution from all turbulence above the maximum altitude for direct sensing of the instrument. We take into account the effects of noise in the measurement of wavefront slopes from centroids and the form of the spatial structure function of the atmospheric optical aberrations.  相似文献   

13.
闭合相位法是实现长基线恒星光干涉高分辨成像的重要技术手段之一,获得精确的闭合相位信息是进行光干涉图像重构的先决条件.提出一种基于精密光程差调制的时域干涉信号闭合相位检测方法,在3路干涉臂上进行非冗余精密光程调制,并通过多次干涉测量结合数据拟合的方法消除光程差调制中存在的正弦误差,使得光程调制的精度达到20 nm以内.引入高速探测器件提升时域干涉信号的采样频率,对探测器上获得的时域干涉信号进行傅立叶变换处理,获得3路干涉臂精确的闭合相位信息.室内实验结果表明,基于精密光程调制的时域信号闭合相位计算精度可以达到1/50波长以内.  相似文献   

14.
The past 5 years have seen a rapid rise in the use of tunable filters in many diverse fields of astronomy, through Taurus Tunable Filter (TTF) instruments at the Anglo-Australian and William Herschel Telescopes. Over this time we have continually refined aspects of operation and developed a collection of special techniques to handle the data produced by these novel imaging instruments. In this paper, we review calibration procedures and summarize the theoretical basis for Fabry–Perot photometry that is central to effective tunable imaging. Specific mention is made of object detection and classification from deep narrow-band surveys containing several hundred objects per field. We also discuss methods for recognizing and dealing with artefacts (scattered light, atmospheric effects, etc.), which can seriously compromise the photometric integrity of the data if left untreated. Attention is paid to the different families of ghost reflections encountered, and the strategies used to minimize their presence. In our closing remarks, future directions for tunable imaging are outlined and contrasted with the Fabry–Perot technology employed in the current generation of tunable imagers.  相似文献   

15.
Along with the spectral attenuation properties, the focal ratio degradation (FRD) properties of optical fibres are the most important for instrumental applications in astronomy. We present a special study about the FRD of optical fibres with a core size of 50 μm to evaluate the effects of stress when mounting the fibre. Optical fibres like this were used to construct the Eucalyptus integral field unit. This fibre is very susceptible to the FRD effects, especially after the removal of the acrylate buffer. This operation is sometimes necessary to allow close packing of the fibres at the input to the spectrograph. Without the acrylate buffer, the protection of the cladding and core of the fibre may be easily damaged. In the near future, fibres of this size will be used to build the Southern Observatory for Astronomical Research (SOAR) integral field unit spectrograph (SIFS) and other instruments. It is important to understand the correct procedure which minimizes any increase in FRD during the construction of the instrument.  相似文献   

16.
Owing to the effect of refraction on the propagation of electromagnetic waves in the terrestrial atmosphere, the direction of propagation is changed. The path of propagation path becomes a curve with an increased path-length so increasing the propagation time. A simplified spherically symmetric atmospheric model is adopted to calculate the delay caused by the path bending, for different zenith distances.  相似文献   

17.
Integral field spectrographs are major instruments with which to study the mechanisms involved in the formation and the evolution of early galaxies. When combined with multi-object spectroscopy, those spectrographs can behave as machines used to derive physical parameters of galaxies during their formation process. Up to now, there has been only one available spectrograph with multiple integral field units, i.e. FLAMES/GIRAFFE on the European Southern Observatory (ESO) Very Large Telescope (VLT). However, current ground-based instruments suffer from a degradation of their spatial resolution due to atmospheric turbulence. In this article we describe the performance of FALCON, an original concept of a new-generation multi-object integral field spectrograph with adaptive optics for the ESO VLT. The goal of FALCON is to combine high angular resolution (0.25 arcsec) and high spectral resolution  ( R > 5000)  in the J and H bands over a wide field of view  (10 × 10 arcmin2)  in the VLT Nasmyth focal plane. However, instead of correcting the whole field, FALCON will use multi-object adaptive optics (MOAO) to perform the adaptive optics correction locally on each scientific target. This requires us then to use atmospheric tomography in order to use suitable natural guide stars for wavefront sensing. We will show that merging MOAO and atmospheric tomography allows us to determine the internal kinematics of distant galaxies up to z ≈ 2 with a sky coverage of 50 per cent, even for objects observed near the Galactic pole. The application of such a concept to extremely large telescopes seems therefore to be a very promising way to study galaxy evolution from z = 1 to redshifts as high as z = 7.  相似文献   

18.
For the majority of optical observing programmes, the sky brightness provides the fundamental limit to signal detection such that the scientific feasibility is largely dictated by the phase of the Moon. Since most observatories do not have the resources to build expensive high-resolution or infrared instruments, they are increasingly at a loss as to how to exploit bright time. We show that, with due consideration of the field and Moon position, it is possible to undertake 'dark-time' observing programmes under 'bright-time' conditions. Our recommendations are particularly appropriate to all-sky survey programmes.
In certain instances, there are gains in observing efficiency with the use of a polarizer, which can significantly reduce the moonlight (or twilight) sky-background flux relative to an extraterrestrial flux. These gains are possible in background-limited cases because the sky background can be highly polarized, caused by scattering, around 90° away from the Moon (or Sun). To take advantage of this, only minor modifications to existing instruments are needed.  相似文献   

19.
Plans for future optical telescopes of diameter more than 10 m are based on segmented mirrors, made up of hundreds or even thousands of segments. A challenge for these telescopes is the alignment in piston (cophasing) where phase differences between individual segments have to be reduced to a small fraction of the observing wavelength in order to avoid degradation of image quality.
Based on the phase discontinuity sensing method used at the Keck telescopes to measure small piston errors using infrared wavelengths, we develop a new method that allows fast high-precision measurements of large piston errors even at visible wavelengths.  相似文献   

20.
New consideration of atmospheric refraction in laser ranging data   总被引:1,自引:0,他引:1  
In this paper we reconsider the formulae of tropospheric refraction correction for the Satellite Laser Range technique. From the expansion of the complementary error function, a new continued fraction form of the mapping function at optical frequencies is derived. The correction terms related to the operation frequency of the laser beam are considered in both the zenith delay and the mapping function. The correction for low-elevation satellites is briefly reviewed. The theoretical accuracy of the new mapping function has been analysed via the ray tracing integrals under the standard atmospheric profile. With respect to the radiosonde data, the deviations of the new mapping function are investigated in an elevation range down to near 1°, which is comparable with the results of the Marini–Murray formulae .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号