首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Gianluca Masi 《Icarus》2003,163(2):389-397
The likely existence of bodies orbiting the Sun with aphelia Q < 0.983 AU has been suggested by numerical simulations of the dynamical evolution of the near-Earth objects (NEOs) population. For obvious reasons, these hypothetical minor bodies are called inner-Earth objects (IEOs). While much progresses has been made in learning more about the Amor, Apollo, and Aten population from surveys optimized for their discovery, no large, systematic, and similar observation projects devoted to the search of IEOs have been started. For their own orbital nature, IEOs can be observed only at small solar elongations (<90°), corresponding to regions of the sky currently neglected by the modern, ongoing surveys. This paper discusses a possible ground-based approach to look for IEOs, providing some useful tricks and the results of simulated surveys devoted to their discovery. It will be shown that such a search promises interesting results, the setup of a dedicated project being highly recommended.  相似文献   

2.
The results of a search for main-belt comets using Canada–France–Hawaii Telescope Legacy Survey data are updated. The remaining observations in the Very Wide segment of data, taken in the g’ or r’ filters, are visually inspected for cometary activity. The number of main-belt objects in the original and new data sets are 11,438 and 13,802, respectively, giving a total number of 25,240. This is the largest, and least biased, search for main-belt comets to date. One object is observed to show cometary activity, and a new upper limit for strongly active main-belt comets is derived to be 40 ± 18.  相似文献   

3.
The origin of Jupiter-family comets is linked to the intermediate stage of evolution through the Centaur region. Thus the structure of the Centaur population provides important constraints on sources of short-period comets. We show that our model of the Oort cloud evolution gives results which are consistent with the orbital distribution of observed Centaurs. In particular, it explains the existence of the large population of Centaurs with semimajor axes greater than 60 AU. The main source for these objects is the inner Oort cloud. Both Jupiter-family and Halley-type comets are produced by Centaurs originating from the Oort cloud. The injection rate for Jupiter-family comets coming from the inner Oort cloud is, at least, not less than that for a model based on the observed sample of high-eccentricity trans-Neptunian objects.  相似文献   

4.
We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a “gassy” comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×109 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ε proportional to a steep power law in wavelength λ: ελα, where α=0.50±0.20(2σ). This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0.03. Carbonaceous material is depleted in the comet's dust by a factor of 2-3, paralleling the C2 depletion in P/IRAS's gas coma. P/Encke, on the other hand, observed while 1.17 AU from the Sun, had an SED that is best fit by a Planck function with T=270±15 K and no emissivity falloff. The dust mass loss rate was 70-280 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 2.3, and the albedo of the dust was about 0.06±0.02. These conclusions are consistent with the strongly curved dust tail and bright dust trail seen by Reach et al. (2000; Icarus 148, 80) in their ISO 12-μm imaging of P/Encke. The observed differences in the P/IRAS and P/Encke dust are most likely due to the less evolved and insolated state of the P/IRAS nuclear surface. If the dust emission behavior of P/Encke is typical of other ecliptic comets, then comets are the major supplier of the interplanetary dust cloud.  相似文献   

5.
The history of associating meteor showers with asteroidal-looking objects is long, dating to before the 1983 discovery that 3200 Phaethon moves among the Geminids. Only since the more recent recognition that 2003 EH1 moves among the Quadrantids are we certain that dormant comets are associated with meteoroid streams. Since that time, many orphan streams have found parent bodies among the newly discovered Near Earth Objects. The seven established associations pertain mostly to showers in eccentric or highly inclined orbits. At least 35 other objects are tentatively linked to streams in less inclined orbits that are more difficult to distinguish from those of asteroids. There is mounting evidence that the streams originated from discrete breakup events, rather than long episodes of gradual water vapor outgassing. If all these associations can be confirmed, they represent a significant fraction of all dormant comets that are in near-Earth orbits, suggesting that dormant comets break at least as frequently as the lifetime of the streams. I find that most pertain to NEOs that have not yet fully decoupled from Jupiter. The picture that is emerging is one of rapid disintegration of comets after being captured by Jupiter, and consequently, that objects such as 3200 Phaethon most likely originated from among the most primitive asteroids in the main belt, instead. They too decay mostly by disintegration into comet fragments and meteoroid streams. The disintegration of dormant comets is likely the main source of our meteor showers and the main supply of dust to the zodiacal cloud. Editorial handling: Frans Rietmeijer.  相似文献   

6.
近地小行星是一类可能对地球安全造成潜在威胁的太阳系小天体, 目前绝大部分的近地小行星是由地基望远镜发现的, 且数目仍在不断增加. 为了对我国未来开展近地小行星发现监测提供参考和借鉴, 利用国际小行星中心公开的数据库对所有近地小行星首次发现时刻的观测资料开展了多维度统计分析. 发现望远镜探测能力的限制会对近地小行星的发现造成选择效应, 导致不同轨道类型近地小行星发现的相对比例逐年变化且与直径有关. 另外, 结合数值模拟获得的轨道数据, 对近地小行星首次发现时的观测场景进行了还原, 获得了发现时刻近地小行星位置在不同天球坐标系的分布, 分析了其分布特征与季节、测站纬度和小行星直径的依赖关系. 最后, 通过分析数据定量考察了太阳、月球和银道面对近地小行星发现的影响, 发现地基望远镜一般难以发现来自太阳方向90$^\circ$范围内直径140m以下的近地小行星, 并且随着小行星直径的减小该限制范围也将变大; 月光污染对近地小行星发现的影响也非常显著, 望月前后几天的观测限制可导致约29%的目标无法被发现, 而且分析表明农历上半月发现的目标一般比下半月发现的更难以被跟踪观测; 银道面特别是银心方向会对近地小行星发现产生影响, 使得黄道面附近存在与季节相关的观测``盲区''.  相似文献   

7.
Comets seem to be composed of matter, which is supposed to have the same molecular composition as protosolar nebula. Although there are no unbiased evidence that cometary nuclei retain the molecular composition inherited from the protosolar cloud, the observed properties of comets indicate that there is at least a resemblance between cometary composition and the material properties of dense interstellar clouds. Therefore the origin of comets could be searched in the cold stages of the protosolar nebula and molecular abundances of grain mantles in this nebula may be similar to those in the cometary dust. It is suggested that comets may contain pristine, virtually unaltered protosolar material and their study might be very relevant way to more information about processes in early stages of the solar nebula. Our knowledge about composition of the cometary nucleus is still relatively scarce, but we can partly deduce it from data obtained either by ground-based spectroscopy or by in situ mass spectrometry from space experiments. Most important were the discovery of fluffy CHON particles composed partly or even completely from compounds containing light elements. No consensus concerning the presence of interstellar pristine matter in comet has been reached from various approaches to determine the relationship between comets and interstellar grains. Most of these studies are based on infrared spectroscopy. Another method is the comparison on the chemical models of the protosolar nebula with the volatile compounds of the cometary nuclei. Both gas-phase and grain-surface chemistry are considered and initial gas-phase atomic abundances are assumed to be protosolar. The cometary matter is certainly not identical with the typical material of dense interstellar cool dense clouds, but it is closer to it than any other type of matter in solar system so far accessible to us. The data from comets combined with models of chemical evolution of matter in environment similar as prevailed the early stage of presolar nebula may at least impose constrains on the condition for comet formation. Here presented study is a preliminary contribution to such studies.  相似文献   

8.
本课题的研究目的是利用R(红)—I(近红外)两色照相测光方法,搜寻银道带天区的红外超天体,并证认IRAS点源的近红外光学对应体。  相似文献   

9.
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article,we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the AsiaPacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particlefilter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.  相似文献   

10.
The Gaia Space Mission [Mignard, F., 2005. The three-dimensional universe with Gaia. ESA/SP-576; Perryman, M., 2005. The three-dimensional universe with Gaia. ESA/SP-576] will observe several transient events as supernovae, microlensing, gamma ray bursts and new Solar System objects. The satellite, due to its scanning law, will detect these events but will not be able to monitor them. So, to take these events into consideration and to perform further studies it is necessary to follow them with Earth-based observations. These observations could be efficiently done by a ground-based network of well-equipped telescopes scattered in both hemispheres.Here we focus our attention at the new Solar System objects to be discovered and observed by the Gaia satellite [Mignard, F., 2002. Observations of Solar System objects by Gaia I. Detection of NEOS. Astron. Astrophys. 393, 727] mainly asteroids, NEOs and comets. A dedicated ground-based network of telescopes as proposed by Thuillot [2005. The three-dimensional universe with Gaia. ESA/SP-576] will allow to monitor those events, to avoid losing them and to perform a quick characterization of some physical properties which will be important for the identification of these objects in further measurements by Gaia.We present in this paper, the beginning of the organization of a Latin-American ground-based network of telescopes and observers joining several institutions in Argentina, Bolivia, Brazil and other Latin-American countries aiming to contribute to the follow-up of Gaia science alerts for Solar System objects.  相似文献   

11.
《Planetary and Space Science》2007,55(11):1614-1621
Many ground-based observations of Na in Mercury's surface-bounded exosphere have been made and continued to be made in an effort to understand the sources, sinks, and distribution of Na around Mercury. These time consuming and costly efforts are made to better understand the physical processes on and around Mercury. A big step would be to discover an actual source of the Na from Mercury's crust because it is already known that meteorites and comets provide Na to the exosphere through impact. We provide ground-based CCD imagery obtained with small ground-based telescopes that show bright albedo features at locations coincident with enhanced Na emissions in Mercury's exosphere. We suggest these locations are sources for Na. We also provide a mechanism to test this hypothesis using in situ observations by instruments on the MESSENGER spacecraft during the three fly bys of Mercury that will occur in 2008 and 2009, and during the orbital mission which begins in 2011. It is necessary to prove that Na is delivered to the exosphere from one or more crustal source regions before exospheric Na can be used as a measure of the volatile content of Mercury used to infer formation and evolution from the primitive solar nebula. The same applies to other elements such as K which is known to be in Mercury's exosphere and S which is postulated to be present. We expound on the impact that the discovery of one or more source regions from Mercury's crust would have on our ability to discern between the three leading models of Mercury's formation and crustal evolution.  相似文献   

12.
The relationship of stellar associations, IRAS point sources, and water masers with two types of objects, which were discovered primarily at Byurakan, is investigated. They are cometary nebulae and Herbig-Haro (H-H) objects. It is shown that almost all of these objects are affiliated with OB or T associations. Two groupings of nonsteady objects have been found. They may belong to unknown T associations. About half of the cometary nebulae and H-H objects were found to be affiliated with IRAS point sources; 22% of the H-H objects and 8% of the cometary nebulae are associated with water masers. Translated from Astrofizika, Vol. 41. No. 4, pp. 585–598, October–December, 1998.  相似文献   

13.
The Canada-France-Hawaii Telescope Legacy Survey, specifically the Very Wide segment of data, is used to search for possible main-belt comets. In the first data set, 952 separate objects with asteroidal orbits within the main-belt are examined using a three-level technique. First, the full-width-half-maximum of each object is compared to stars of similar magnitude, to look for evidence of a coma. Second, the brightness profiles of each object are compared with three stars of the same magnitude, which are nearby on the image to ensure any extended profile is not due to imaging variations. Finally, the star profiles are subtracted from the asteroid profile and the residuals are compared with the background using an unpaired T-test. No objects in this survey show evidence of cometary activity. The second survey includes 11438 objects in the main-belt, which are examined visually. One object, an unknown comet, is found to show cometary activity. Its motion is consistent with being a main-belt asteroid, but the observed arc is too short for a definitive orbit calculation. No other body in this survey shows evidence of cometary activity. Upper limits of the number of weakly and strongly active main-belt comets are derived to be 630±77 and 87±28, respectively. These limits are consistent with those expected from asteroid collisions. In addition, data extracted from the Canada-France-Hawaii Telescope image archive of main-belt Comet 176P/LINEAR is presented.  相似文献   

14.
Space-based observatories have several advantages over ground-based observatories in searching for asteroids and comets. In particular, the Aten and Interior to Earth’s Orbit (IEO) asteroid classes may be efficiently sought at low solar elongations along the ecliptic plane. A telescope in low Earth orbit has a sufficiently long orbital baseline to determine the parallax for all Aten and IEO class asteroids discovered with this observing strategy. The Near Earth Object Space Surveillance Satellite (NEOSSat) mission will launch a microsatellite to exploit this observing strategy complementing ground-based search programmes.  相似文献   

15.
Using a chemical scheme based on ion-molecule reactions in cool interstellar clouds, the possibility of a deuterium enrichment of volatile material in comets is discussed. It is assumed that the hydrogen-containing molecules are deuterated before accretion and condensation on the coremantle dust particles from which the cometesimals are formed. The D/H ratio in comets may be enhanced in respect to the average value by a factor of 102. Therefore comets are not promising objects for testing the primordial deuterium abundance.  相似文献   

16.
The steady-state distribution of orbits of Apollo-Amor objects is calculated for a variety of possible sources. These include asteroids near the inner edge of the belt, cometary orbits similar to Encke, and hypothetical extinct cometary orbits with perihelia larger than that of Encke. In all but one case, the steady-state distributions are similar for all these sources, and predict Amor/Apollo ratios of 1.5 to 3. These ratios are lower than those predicted by work in which the effects of the ν6 secular resonance were not considered. These results are in general agreement with observation, although the higher (~3) Amor/Apollo ratios found for many of the sources may turn out to be unacceptably high. The absolute number of Apollo-Amors observed is found to require an injection rate of ~15 objects/(106 years). This rate is easily achieved if the present existence of Encke is assumed to be a reasonably probable event, and if Encke becomes a ~1-km-diameter Apollo object following exhaustion of its volatile material; best estimates of the injection rate from the asteroid belt [~1.5/(106 years)] are too low. Hence a dominant cometary component is suggested. The predicted number of Apollo objects in small (q < 1.0 AU, a < 1.4 AU orbits is in agreement with observation. Predicted lunar and terrestrial cratering rates agree approximately with observation. An unexplained difference between the lunar and terrestrial results is probably caused by uncertainties in the scaling laws or crater counts used. This discrepancy precludes an exact test of these calculations using cratering data.  相似文献   

17.
Tom Gehrels 《Icarus》1981,47(3):518-522
Comets are usually discovered to a magnitude limit of Blim~19 at best. This can be improved by one magnitude with a blank-search technique that is described here. To find a new comet, the required search area near opposition is ~600 square degrees at Blim~20.0. Three faint comets were found this way; they are inconspicuous and would not have been discovered in any other manner. It therefore appears that the presently known statistics must be incomplete at the faint end due to incompleteness of the discovery observations. Another, future, method to find such inconspicuous comets is with electronically scanning cameras and computerized reduction. If such a CCD scannerscope were to have a ~1.8-m aperture, it could discover at least 40 comets per year.  相似文献   

18.
We present a careful analysis of the point-source detection limit of the AKARI All-Sky Survey in the WIDE-S 90-μm band near the North Ecliptic Pole (NEP). Timeline analysis is used to detect IRAS ( Infrared Astronomy Satellite ) sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90-μm flux of a source. Combined with a robust noise measurement, the point-source flux detection limit at signal-to-noise ratio  (S/N) > 5  for a single detector row is  1.1 ± 0.1 Jy  which corresponds to a point-source detection limit of the survey of ∼0.4 Jy.
Wavelet transform offers a multiscale representation of the Time Series Data ( tsd ). We calculate the continuous wavelet transform of the tsd and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above 4σ can be identified as the only real sources at the Point Source Scales. We also investigate the correlation between the non- IRAS sources detected in timeline analysis and cirrus emission using wavelet transform and contour plots of wavelet power spectrum. It is shown that the non- IRAS sources are most likely to be caused by excessive noise over a large range of spatial scales rather than real extended structures such as cirrus clouds.  相似文献   

19.
Cratering rates in the outer Solar System   总被引:2,自引:0,他引:2  
Kevin Zahnle  Paul Schenk  Luke Dones 《Icarus》2003,163(2):263-289
This paper is a compilation by table, graph, and equation of impact cratering rates from Jupiter to Pluto. We use several independent constraints on the number of ecliptic comets. Together they imply that the impact rate on Jupiter by 1.5-km-diameter comets is currently ?(d > 1.5 km) = 0.005−0.003+0.006 per annum. Other kinds of impactors are currently unimportant on most worlds at most sizes. The size-number distribution of impactors smaller than 20 km is inferred from size-number distributions of impact craters on Europa, Ganymede, and Triton; while the size-number distribution of impacting bodies larger than 50 km is equated to the size-number distribution of Kuiper Belt objects. The gap is bridged by interpolation. It is notable that small craters on Jupiter’s moons indicate a pronounced paucity of small impactors, while small craters on Triton imply a collisional population rich in small bodies. However it is unclear whether the craters on Triton are of heliocentric or planetocentric origin. We therefore consider two cases for Saturn and beyond: a Case A in which the size-number distribution is like that inferred at Jupiter, and a Case B in which small objects obey a more nearly collisional distribution. Known craters on saturnian and uranian satellites are consistent with either case, although surface ages are much younger in Case B, especially at Saturn and Uranus. At Neptune and especially at Saturn our cratering rates are much higher than rates estimated by Shoemaker and colleagues, presumably because Shoemaker’s estimates mostly predate discovery of the Kuiper Belt. We also estimate collisional disruption rates of moons and compare these to estimates in the literature.  相似文献   

20.
Zdenek Sekanina 《Icarus》1977,30(3):574-594
A new approach is formulated for the study of motions of the split comets. It is based on the assumption that two fragments of a comet separate at a rate that is determined primarily by a slight difference between their effective solar attractions rather than by the impulse imparted on them at the time of splitting. The net dynamical effect is interpreted as due to differential nongravitational forces, which depend on the size, density, structure, composition, and spin rate of the fragments. Since at least at smaller distances from the Sun these forces vary inversely as roughly the square of heliocentric distance, their dynamical effect resembles that of radiation pressure, so that the formalism developed for the motion of a dust particle in a cometary tail is applicable in principle. The calculations show that this approach provides reasonably good to excellent fits of the observed separations for a great majority of the split comets, and that it fails only in the case of Comet 1957 VI. The correlation between the differential nongravitational forces and the endurance of the fragment is investigated in terms of the physical behavior of the fragments, with the emphasis on the short-lived objects. Some of the unusual phenomena accompanying the split comets are discussed, and comments are also offered on the sequence of splitting for comets with multiple nuclei and on the distribution of the points of splitting in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号