首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic fields give rise to distinctive features in different solar atmospheric regimes. To study this, time variations of the flare index, sunspot number and sunspot area, each index arising from different physical conditions, were compared with the solar composite irradiance throughout cycle 23. Rieger-type periodicities in these time series were calculated using Fourier and wavelet transforms (WTs). The peaks of the wavelet power of these periodicities appeared between the years 1999 and 2002. We found that the solar irradiance oscillations are less significant than those in the other indices during this cycle. The irradiance shows non-periodic fluctuations during this time interval. The peaks of the flare index, sunspot number and sunspot total area were seen around 2000.4, 1999.9 and 2001.0, respectively. These periodicities appeared intermittently and were not simultaneous in different solar activity indices during the three years of the maximum phase of solar cycle 23.  相似文献   

2.
In order to investigate the relationship between magnetic-flux emergence, solar flares, and coronal mass ejections (CMEs), we study the periodicity in the time series of these quantities. It has been known that solar flares, sunspot area, and photospheric magnetic flux have a dominant periodicity of about 155 days, which is confined to a part of the phase of the solar cycle. These periodicities occur at different phases of the solar cycle during successive phases. We present a time-series analysis of sunspot area, flare and CME occurrence during Cycle 23 and the rising phase of Cycle 24 from 1996 to 2011. We find that the flux emergence, represented by sunspot area, has multiple periodicities. Flares and CMEs, however, do not occur with the same period as the flux emergence. Using the results of this study, we discuss the possible activity sources producing emerging flux.  相似文献   

3.
    
The short-term periodicities of the flare index are investigated in detail using Fourier and wavelet transforms for the full disc and for the northern and the southern hemispheres of the Sun separately over the epoch of almost 4 cycles (1966–2002). The most pronounced power peaks were found by the Fourier transform to be present at 25.6, 27.0, 30.2, and 33.8 days. The wavelet transform results show that the occurrence of periodicities of flare index power is highly intermittent in time. A comparison of the results of the Fourier transform and the time-period wavelet transform of the flare index time series has clarified the importance of different periodicities, whether they are or are not the harmonics of the basic ones, as well as the temporal location of their occurrence. We found that the modulation of the flare index due to the 27-day solar rotation is more pronounced during the declining portion of solar cycle than during the rising portion.  相似文献   

4.
Short-term periodicities of solar activity were studied with the flare index by using Discrete Fourier Transform for the time interval 1966–1986. Two noticeable periodicities (18.5 and 5 months) have been found. The existence of these periodicities comparing with the early findings is discussed.  相似文献   

5.
The short-term periodicities of the flare index are investigated in detail using Fourier and wavelet transforms for the full disc and for the northern and the southern hemispheres of the Sun separately over the epoch of almost 4 cycles (1966–2002). The most pronounced power peaks were found by the Fourier transform to be present at 25.6, 27.0, 30.2, and 33.8 days. The wavelet transform results show that the occurrence of periodicities of flare index power is highly intermittent in time. A comparison of the results of the Fourier transform and the time-period wavelet transform of the flare index time series has clarified the importance of different periodicities, whether they are or are not the harmonics of the basic ones, as well as the temporal location of their occurrence. We found that the modulation of the flare index due to the 27-day solar rotation is more pronounced during the declining portion of solar cycle than during the rising portion.  相似文献   

6.
The flare index of the current solar cycle 22 is analysed to detect periodicities. Power spectral analysis of the time series of solar flare index data reveals a periodicity around 73 and 53 days. We find that a periodicity of 73 days was in operation from November 1988 to the end of December 1991. We also find that when the 73-day periodicity or the 154-day periodicity is in operation the flare index is well correlated with the relative sunspot numbers.  相似文献   

7.
We have studied Forbush decreases (FD) with solar flare data and major solar proton event (SPE) data (E > 10 MeV) for the years 1976–1986 and have found that FD solar flare data exhibit periods around 0.95, 2.4, and 4.75 years at >99% level of confidence (CL), while SPE data exhibit periods around 2.6 and 5.0 years (at >95% CL). Because of a common periodicity around 2.5 years, it is suggested that FD with the solar flare data and major SPE data, together with solar diameter and solar neutrino variations, behave similarly and may have a common origin.  相似文献   

8.
The flare index of the current solar cycle 22 is analysed to detect intermediate-term periodicities from Sep. 1, 1986 to Dec. 31, 1991. Power spectral analysis of the time series of solar flare index data reveals a periodicity around 73 and 53 days. We find that a periodicity of 73 days was in operation from 1988 November to the end of 1991 December. We also find that when the 73-day periodicity or the 154-day periodicity is in operation, the flare index is well correlated with the relative sunspot numbers. As a conclusion, we do not expect to see a resumption of the 154-day or 73-day periodicity, but we do expect only one of the periodicity near the integral multiples of 25d.8 in the next solar cycles.  相似文献   

9.
Major solar flare events have been utilised to study the latitudinal frequency distribution of solar flares in northern and southern hemispheres for the period of 1986 to 2003. A statistical analysis has been performed to obtain the correlation between Coronal Mass Ejections (CMEs) and Forbush decrease (Fds) of cosmic ray intensity. Almost the same flares distribution in both hemispheres is found in association with CMEs. In a further analysis, it is noted that a larger number of CME-associated solar flares located in the northern hemisphere are found to be more effective in producing Forbush decreases.  相似文献   

10.
We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986–2008, in order to investigate the long- and mid-term periodicities including the Rieger (\({\sim }130\) to \({\sim }190\) days), quasi-period (\({\sim }200\) to \({\sim }374\) days), and quasi-biennial periodicities (\({\sim }1.20\) to \({\sim }3.27\) years) during the combined solar cycles 22–23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of \({\sim }1.43\) years and for solar flare index of \({\sim }1.41\) year, and galactic cosmic ray, \({\sim }1.35\) year, during combined solar cycles 22–23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22–23, we found that galactic cosmic ray modulation at mid cut-off rigidity (\(\hbox {Rc} = 2.43\hbox {GV}\)) is anti-correlated with time-lag of few months.  相似文献   

11.
The periodic analyses of solar flare data have been carried out by different authors for about three decades. Controversial results appear as depending on the analysis techniques and investigated time periods. Considering that different authors applied different methods to different data sets, it seems necessary to reanalyze the periodicity of solar flare index with a unified method. In this study we used two new methods to investigate the periodic behavior of solar flare index data, first for individual cycles 21, 22 and 23, and then for all of them. We used i) the multi taper method with red- and white-noise approximations, and ii) the Morlet wavelet transform for periodicity analysis. Apart from the solar rotation periodicity of about 27 days which is of obvious significance and is found in all examined cycles with at least a 90% significance level, we obtained the following prominent periods: 152 days for cycle 21, 73 days for cycle 22, and 62 days for cycle 23. Finally, we compare our results with the ones previously found. We emphasize the fact that a lesser number of periodicities is found in the range of low frequencies (long periods) while the higher frequencies show a greater number of periodicities. This result might be useful for better predictions of the solar cycles.  相似文献   

12.
We have analyzed the intermediate-term periodicities in soft X-ray flare index (FISXR) during solar cycles 21, 22 and 23. Power-spectral analysis of daily FISXR reveals a significant period of 161 days in cycle 21 which is absent during cycles 22 and 23. We have found that in cycle 22 periodicities of 74 and 83 days are in operation. A 123-day periodicity has been found to be statistically significant during part of the current solar cycle 23. The existence of these periodicities has been discussed in the light of earlier results.  相似文献   

13.
Short-term periodicities of solar activity were studied. To perform the study, a north-south asymmetry time series was constructed by using the northern and the southern hemisphere flare index values for solar cycle 22. The statistical significance of this time series was calculated. It indicates that in most of cases the asymmetry is highly significant during cycle 22. Power spectral analysis of this time series reveals a periodicity around 25.5 days, which was announced before as a fundamental period of solar activity (Bai and Sturrock, 1991). To investigate the time agreement between the two hemispheres, the phase distribution was studied and a phase shift of about 0.5 was found. An activity trend from the north to the south was found.  相似文献   

14.
In this study, we look for the mid‐term variations in the daily average data of solar radius measurements made at the Solar Astrolabe Station of TUBITAK National Observatory (TUG) during solar cycle 23 for a time interval from 2000 February 26 to 2006 November 15. Due to the weather conditions and seasonal effect dependent on the latitude, the data series has the temporal gaps. For spectral analysis of the data series, thus, we use the Date Compensated Discrete Fourier Transform (DCDFT) and the CLEANest algorithm, which are powerful methods for irregularly spaced data. The CLEANest spectra of the solar radius data exhibit several significant mid‐term periodicities at 393.2, 338.9, 206.5, 195.2, 172.3 and 125.4 days which are consistent with periods detected in several solar time series by several authors during different solar cycles. The knowledge relating to the origin of solar radius variations is not yet present. To see whether these variations will repeat in next cycles and to understand how the amplitudes of such variations change with different phases of the solar cycles, we need more systematic efforts and the long‐term homogeneous data. Since most of the periodicities detected in the present study are frequently seen in solar activity indicators, it is thought that the physical mechanisms driving the periodicities of solar activity may also be effective in solar radius variations (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Observed solar, interplanetary and geomagnetic time series contain quasi periodicities on scales of 1–2.5 years. The further discovery of 1.3 year fluctuations in helioseismic observations suggests that a variety of signals may be related to the underlying dynamo in the Sun. We use independent component analysis to study the temporal and spatial variations of a few statistically independent global modes of the axisymmetric solar magnetic field over a period of 25 years. Five modes capture the salient properties of the data. Two modes describe the polar and high latitude fields, and present 1–1.5 year quasi periodicities. The other three modes correspond to low and mid-latitude phenomena and show both 1.3 and 1.7-year variations. By comparing the characteristic time scales, dates of occurrence and heliocentric latitudes of these modes, we connect them to their manifestations in heliospheric time series.  相似文献   

16.
We have constructed a time series of the number of coronal mass ejections (CMEs) observed by SOHO/LASCO during solar cycle 23. Using spectral analysis techniques (the maximum entropy method and wavelet analysis) we found short-period (< one year) semiperiodic activity. Among others, we found interesting periodicities at 193, 36, 28, and 25 days. We discuss the implications of such short-period activity in terms of the emergence and escape of magnetic flux from the convection zone, through the low solar atmosphere (where these periodicities have been found for numerous activity parameters), toward interplanetary space. This analysis shows that CMEs remove the magnetic flux in a quasiperiodic process in a way similar to that of magnetic flux emergence and other solar eruptive activity.  相似文献   

17.
This paper discusses solar cosmic ray phenomena and related topics from the solar physical point of view. Basic physics of the solar atmosphere and solar flare phenomena are, therefore, considered in some detail. Since solar cosmic rays are usually produced by solar flares, we must first understand the processes and mechanism of solar flares, especially the so-called proton flares, in order to understand the acceleration mechanism of solar cosmic rays and their behaviour in both the solar atmosphere and interplanetary space. For this reason, detailed discussion is given on various phenomena associated with solar flares, proton flare characteristics, and the mechanism of solar flares.Since the discovery of solar cosmic rays by Forbush, the interplanetary space has been thought of as medium in which solar cosmic rays propagate. In this paper, the propagation of solar cosmic rays in this space is, therefore, discussed briefly by referring to the observed magnetic properties of this space. Finally, some problems related to the physics of galactic cosmic rays are discussed.Astrophysics and Space Science Review Paper.  相似文献   

18.
S. D. Bouwer 《Solar physics》1992,142(2):365-389
Using a dynamic power spectral analysis technique, the time-varying nature of solar periodicities is investigated for background X-ray flux, 10.7 cm flux, several indices to UV chromospheric flux, total solar irradiance, projected sunspot areas, and a sunspot blocking function. Many prior studies by a host of authors have differed over a wide range on solar periodicities. This investigation was designed to help resolve the differences by examining how periodicities change over time, and how the power spectra of solar data depend on the layer of the solar atmosphere. Using contour diagrams that show the percent of total power over time for periods ranging from 8 to 400 days, the transitory nature of solar periodicities is demonstrated, including periods at 12–14, 26–28, 51–52, and approximately 154 days. Results indicate that indices related to strong magnetic fields show the greatest variation in the number of periodicities, seldom persist for more than three solar rotations, and are highly variable in their frequency and amplitude. Periodicities found in the chromospheric indices are fewer, persist for up to 8–12 solar rotations, and are more stable in their frequency and amplitude. An additional result, found in all indices to varying degrees and related to the combined effects of solar rotation and active region evolution, is the fashion in which periodicities vary from about 20 to 36 days. I conclude that the solar data examined here are both quasi-periodic and quasistationary, with chromospheric indices showing the longest intervals of stationarity, and data representing strong magnetic fields showing the least stationarity. These results may have important implications to the results of linear statistical analysis techniques that assume stationarity, and in the interpretation of time series studies of solar variability.  相似文献   

19.
Studies on the periodic variation and the phase relationship between different solar activity indicators are useful for understanding the long-term evolution of solar activity cycles.Here we report the statistical analysis of grouped solar flare(GSF) and sunspot number(SN) during the time interval from January 1965 to March 2009.We find that,(1) the significant periodicities of both GSF and SN are related to the differential rotation periodicity,the quasi-biennial oscillation(QBO),and the eleven-year Schwabe cycle(ESC),but the specific values are not absolutely identical;(2) the ESC signal of GSF lags behind that of SN with an average of 7.8 months during the considered time interval,which implies that the systematic phase delays between GSF and SN originate from the inter-solar-cycle signal.Our results may provide evidence about the storage of magnetic energy in the corona.  相似文献   

20.
The known Rieger periodicity (ranging in literature from 150 up to 160 d) is obvious in numerous solar indices. Many subharmonic periodicities have also been observed (128-, 102-, 78- and 51-d) in flare, sunspot, radio bursts, neutrino flux and flow data, coined as Rieger-type periodicities (RTPs). Several attempts are focused to the discovery of their source, as well as the explanation of some intrinsic attributes that they present, such as their connection to extremely active flares, their temporal intermittency as well as their tendency to occur near solar maxima. In this paper, we link the X-ray flare observations made on Geosynchronous Operational Environmental Satellites (GOES) to the already existing theoretical Lou model, suggesting that the mechanism behind the RTPs is the Rossby-type waves. The enhanced data analysis methods used in this article (Scargle–Lomb periodogram and Weighted Wavelet Z-Transform) provide the proper resolution needed to argue that RTPs are present also in less energetic flares, contrary to what has been inferred from observations so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号