首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
付玉  袁沭  金振宇  刘忠 《天文学报》2023,64(1):8-84
望远镜的仪器偏振是影响太阳磁场测量的重要因素,为了获得精确的太阳磁场信息,对大型太阳望远镜光学系统进行偏振优化设计非常必要.针对8 m中国巨型太阳望远镜(Chinese Giant Solar Telescope, CGST)的偏振设计需求,提出了基于四镜偏振补偿结构的望远镜折轴光学系统设计方案.基于偏振光线追迹方法,分析了该方案仪器偏振在望远镜光瞳和视场上的分布特性以及视场分布特性随望远镜运动和波长的变化.结果表明,在HeI 1.083μm和FeI 1.565μm磁敏谱线所在的近红外波段, CGST仪器偏振满足2×10-4测量精度要求的“无偏振视场”为0.91′,而在可见光波段该“无偏振视场”为0.5′.  相似文献   

2.
基于OMR的2.16米望远镜积分视场单元方案   总被引:1,自引:0,他引:1  
基于积分视场单元的三维成像光谱技术日趋成熟,并且与传统的狭缝光谱仪相比有许多明显的优势。2.16m望远镜的OMR光谱仪是采用平面光栅分光的低色散卡焦光谱仪器,可以考虑对其进行积分视场单元的升级优化。在不改变OMR光谱仪自身结构,不影响现有功能的同时,利用“微透镜阵列+光纤束”的技术可以实现积分视场单元与OMR光谱仪的耦合。设计了两种方案,给出了升级积分视场单元后的空间分辨率和视场。  相似文献   

3.
类地行星(月球)自转监测望远镜的科学目标是在行星(月球)表面现场测量行星(月球)自转并研究其内部结构和物理性质.为了验证全新的观测原理和资料处理方法,项目团队设计制造了一套原理样机,在一台商用天文望远镜的光路前端增加3面反射镜组,使其具有同时观测3个视场的能力.自2017年起在地面上开展了观测实验,获得了混合有3视场星象的图像.通过计算星象在前后图像上的位移实现了归属视场识别,使得观测效果与分视场独立观测等同,证明了用一台设备同时观测多视场的可行性.处理图像并通过3个视场中心的指向变化归算地球自转轴的空间指向,与理论值比较偏差平均约1′′,证明了观测原理和数据处理方法有效.对各种观测误差来源进行了分析,包含大气折射、仪器热稳定性和光学分辨能力的影响等,指出采用更长焦距的望远镜可以提高空间分辨率,优化形变控制可以提高观测稳定性.改进多视场同时观测中的光学设计也有助于精度的提高.  相似文献   

4.
暗弱天然卫星与主带小行星相比,具有亮度低、速度变化快的特点.在观测这类天体时,不能简单地延长曝光时间来提高其信噪比.尝试观测多幅短曝光的CCD (chargecoupled device)图像,采用移位堆叠(shift-and-add)方法,希望提高目标成像的信噪比,获得暗弱天然卫星的精确测量结果.使用2018年4月9—12日夜间,中国科学院云南天文台1 m望远镜(1 m望远镜)拍摄的木星5颗暗卫星的229幅CCD图像,实施了移位堆叠试验.为了验证结果的正确性,与相近日期中国科学院云南天文台2.4 m望远镜(2.4 m望远镜)观测的相同木卫图像的测量结果进行了比较和分析.位置归算采用了JPL (Jet Propulsion Laboratory)历表.结果表明,对CCD图像使用移位堆叠方法,通过叠加约10幅曝光时间100 s的图像, 1 m望远镜能观测暗至19等星的不规则天然卫星,而且测量的准确度与2.4 m望远镜的测量结果有良好的一致性.  相似文献   

5.
黑洞暂现双星MAXI J1820+070于2018年3月的明亮爆发为研究光学快速测光能力提供了重要机遇. 以快速光学相机(Fast Optical Camera, FOC)为终端设备分别在2018年4月22日、5月26日和8月31日(UTC)使用云南天文台丽江观测站2.4m望远镜对爆发中的黑洞双星MAXI J1820+070进行了亚秒时标的测光观测. 通过观测数据分析, 研究了相机的快速测光性能.对全帧和1/4帧两种观测模式的帧间间隔(frame time), 测得平均帧间间隔为(22.866 pm 0.679)ms和(5.868 pm 0.169)ms. 通过视场中多颗明亮参考源校准,提取了观测对象和参考源的光变曲线, 获得了光变曲线的傅里叶功率谱, 区分了观测对象本征光变和仪器或望远镜等观测因素带来的非本征光变, 成功探测到目标黑洞双星MAXI J1820+070中的光学波段低频准周期振荡信号, 并判别了观测中来自仪器设备或与观测条件相关的时变信号. 这成功验证了相机高速稳定的测光性能和对短至5ms时标光变信号的探测能力.  相似文献   

6.
8~10m级光学/红外望远镜的高分辨率光谱仪   总被引:1,自引:0,他引:1  
朱永田 《天文学进展》2001,19(2):295-295
介绍并比较了KeckSubaruVLTHET及Gemini中的5架8~10m天文望远镜的高分辨率光谱仪,分析这些仪器与2~4m级望远镜的阶梯光栅光谱仪或Coude光谱仪相比所采用的新设计思想和新技术.  相似文献   

7.
云南天文台1m望远镜终端之一的暗天体分光仪和照相机具有4种运行模式:缩焦照相机、无缝多目标光谱仪、有缝光谱仪和星冕仪。这4种运行模式能在几分钟的时间内相互转换,高效快速和灵活方便。该仪器的光学质量优秀,光学系统消像差,特别是消色差。由于光学系统消色差,所成像的低色散光谱在404.6~766.5nm全波段尖锐平直。在多色测光时,各测光波段的像面位置不变,同时兼有大视场的优点,可提高测光精度和测光效率。  相似文献   

8.
8—10m级光学/红外望远镜的高分辨率光谱仪   总被引:1,自引:0,他引:1  
朱永田 《天文学进展》2001,19(3):336-345
介绍并比较Keck、Subaru、VLT、HET及Gemini中的5架8~10m天文望远镜的高分辨率光谱仪,分析这些仪器与2~4m级望远镜的阶梯光栅光谱仪或Coudé光谱仪相比所采用的新设计思想和新技术.  相似文献   

9.
地基光学天文望远镜是人类探索与研究宇宙的重要手段, 对已有地基光学台址的光学观测环境进行监测分析, 可以为后期设备针对性改造以及观测者调整观测策略提供参考依据, 对提升地基光学设备的观测效能具有重要的意义. 吉林天文观测基地(简称``基地'')隶属于中国科学院国家天文台长春人造卫星观测站, 位于吉林省吉林市大绥河镇小绥河村南沟约5 km处(东经126.3\circ, 北纬43.8\circ, 海拔高度313m). 基地大气视宁度均值范围约为1.3$''$--1.4$''$、天顶附近V波段的天光背景亮度为20.64magcdotarcsec-2、年晴夜数最高可达270余天, 具有良好的天文观测条件. 吉林天文观测基地于2016年投入运行, 现有1.2m光电望远镜、迷你光电阵列望远镜、大视场光电望远镜阵列、新型多功能阵列结构光电探测平台等多台(套)光电望远镜设备. 利用上述设备, 主要围绕空间目标探测与识别、精密轨道确定、光电探测新方法以及变源天体的多色测光等开展相关研究工作, 与多家国内高校及科研院所保持着良好的合作关系.  相似文献   

10.
高能伽马射线探测是研究极端天体物理的主要途径之一.空间高能伽马射线探测具有覆盖波段宽、时间连续性好、能量分辨率高等突出优势.在成功研发并运行我国首颗天文卫星—“悟空”号(DArk Matter Particle Explorer, DAMPE)的基础上,紫金山天文台联合国内的多家单位提议研制甚大面积伽马射线空间望远镜(Very Large Area gamma-ray Space Telescope, VLAST),该望远镜在GeV–TeV能段接受度高达10 m2·sr,并具有强的MeV–GeV波段探测能力,其综合性能预期比费米卫星的大面积伽马望远镜(Fermi-LAT (Large Area Telescope))提升10倍之上.重点介绍了VLAST的主要科学目标,探测器的初步配置及预期性能指标.  相似文献   

11.
Due to its wide wavelength coverage, multi-resolution mode, and high transmission efficiency, the wide field multi-object spectrograph becomes the most common-used universal instrument in extremely large telescopes. It's still a great challenge to build the wide field multi-object spectrograph for a 30 m class telescope because of its sharply increased volume and budget. With the rapid development of astronomy and astrophysics, the innovation of astronomical technology is fundamentally required. In this paper, the research progress of different kinds of wide-field multi-object spectrographs is illustrated and reviewed, the recent status of conceptual designs and the instrument features of the wide field multi-object spectrographs of the three 30 m class telescopes in the world, especially the current effort made by the Chinese team for the wide field multi-object spectrograph of the Thirty Meter Telescope (TMT) are introduced.  相似文献   

12.
One of the key goals of NASA’s astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z~1 (look-back time of ~8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2–0.4 μm at a spectral resolving power, R~500. This observed spectral range corresponds to 0.1–0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.  相似文献   

13.
Radial velocity surveys for extrasolar planets generally require substantial amounts of large telescope time in order to monitor a sufficient number of stars. Two of the aspects which can limit such surveys are the single-object capabilities of the spectrograph, and an inefficient observing strategy for a given observing window. In addition, the detection rate of extrasolar planets using the radial velocity method has thus far been relatively linear with time. With the development of various multi-object Doppler survey instruments, there is growing potential to dramatically increase the detection rate using the Doppler method. Several of these instruments have already begun usage in large-scale surveys for extrasolar planets, such as Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (VLT) and Keck Exoplanet Tracker (ET) on the Sloan 2.5-m wide-field telescope.
In order to plan an effective observing strategy for such a program, one must examine the expected results based on a given observing window and target selection. We present simulations of the expected results from a generic multi-object survey based on calculated noise models and sensitivity for the instrument and the known distribution of exoplanetary system parameters. We have developed code for automatically sifting and fitting the planet candidates produced by the survey to allow for fast follow-up observations to be conducted. The techniques presented here may be applied to a wide range of multi-object planet surveys.  相似文献   

14.
HERMES, a fibre‐fed high‐resolution (R = 85000) échelle spectrograph with good stability and excellent throughput, is the work‐horse instrument of the 1.2‐m Mercator telescope on La Palma. HERMES targets building up time series of high‐quality data of variable stellar phenomena, mainly for asteroseismology and binary‐evolution research. In this paper we present the HERMES project and discuss the instrument design, performance, and a future upgrade. We also present some results of the first four years of HERMES observations. We illustrate the value of small telescopes, equipped with efficient instrumentation, for high‐resolution spectroscopy. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3 m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent throughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320–950 nm wavelength region. It provides a 25×38 arcsec field with 0.5 arcsec sampling along each of twenty five 38×1 arcsec slitlets. The output format is optimized to match the 4096×4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of “interleaved nod-and-shuffle” will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) >30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.  相似文献   

16.
We performed extensive data simulations for the planned ultra‐wide‐field, high‐precision photometric telescope ICE‐T (International Concordia Explorer Telescope). ICE‐T consists of two 60 cm‐aperture Schmidt telescopes with a joint field of view simultaneously in two photometric bandpasses. Two CCD cameras, each with a single 10.3k × 10.3k thinned back‐illuminated device, would image a sky field of 65 square degrees. Given a location of the telescope at Dome C on the East Antarctic Plateau, we searched for the star fields that best exploit the technical capabilities of the instrument and the site. We considered the effects of diurnal air mass and refraction variations, solar and lunar interference, interstellar absorption, overexposing of bright stars and ghosts, crowding by background stars, and the ratio of dwarf to giant stars in the field. Using NOMAD, SSA, Tycho‐2 and 2MASS‐based stellar positions and BVIJH magnitudes for these fields, we simulated the effects of the telescope's point‐spread‐function, the integration, and the co‐addition times. Simulations of transit light curves are presented for the selected star fields and convolved with the expected instrumental characteristics. For the brightest stars, we showed that ICE‐T should be capable of detecting a 2 REarth Super Earth around a G2 solar‐type star, as well as an Earth around an M0‐star – if these targets were as abundant as hot Jupiters. Simultaneously, the telescope would monitor the host star's surface activity in an astrophysically interpretable manner (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We describe the integral field unit (IFU) which converts the Gemini Multiobject Spectrograph (GMOS) installed on the Gemini-North telescope to an integral field spectrograph,which produces spectra over a contiguous field of view of 7 × 5 arcsec with spatial sampling of 0.2 arcsecover the wavelength range 0.4-1.0 μm.GMOS is converted to this mode by the remote insertion of the IFU into thebeam in place of the masks used for the multiobject mode. A separate fieldof half the area of the main field, but otherwise identical, is alsoprovided to improve background subtraction. The IFU contains 1500lenslet-coupled fibres and was the first facility of any type for integralfield spectroscopy employed on an 8/10 m telescope.We describe the design, construction and testing of the GMOS IFU and present measurements of the throughput both in the laboratory and at the telescope. We compare these with a theoretical prediction made before construction started. All are in good agreement with each other, with the on-telescope throughput exceeding 60% (averaged over wavelength). Finallywe show an example of data obtained during commissioning to illustrate the power of the device.  相似文献   

18.
From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small‐scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal‐poor stars, and allow for studies of heavy elements (Z ≥ 38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal‐poor stars. This means that some elements cannot be studied in the visual‐redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. It is therefore important that the next generation of spectrographs are designed such that they cover a wide wavelength range and can observe a large number of stars simultaneously. Only then, we can gain the full information from stellar spectra, from both metal‐poor to metal‐rich ones, that will allow us to understand the aforementioned formation scenarios in greater detail. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi‐object spectrograph commissioned for the ESO VISTA 4 m‐telescope. While 4MOST is also intended for studies of active galactic nuclei, baryonic acoustic oscillations, weak lensing, cosmological constants, supernovae and other transients, we focus here on high‐density, wide‐area survey of stars and the science that can be achieved with high‐resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high‐resolution spectrograph, we find that a sampling of ≥2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393–436 nm, is the most well‐balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (±0.1 dex) in the blue and allow us to confront the outlined scientific questions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
TIGRE is a new robotic spectroscopy telescope located in central Mexico at the La Luz Observatory of the University of Guanajuato. The 1.2 m telescope is fiber‐coupled to an ´echelle spectrograph with a spectral resolving power exceeding 20000 over most of the covered spectral range between 3800 Å and 8800 Å, with a small gap of 130 Å around 5800 Å. TIGRE operates robotically, i.e. it (normally) carries out all observations without any human intervention, including, in particular, the target selection in any given observing night. In this paper we describe the properties of the TIGRE instrumentation and its technical realization, as well as our first operational experience with the performance and efficiency of the overall system. Finally, we present some examples of recent TIGRE observations. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A new spectrograph (FIASCO) is in operation at the 0.9 m telescope of the University Observatory Jena. This article describes the characterization of the instrument and reports its first astronomical observations, among those lithium (6708 Å) detection in the atmosphere of young stars, and the simultaneous photometric and spectroscopic monitoring of variable stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号