首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我国研制的氢原子频标在陕西天文台运行已二十多年了 ,对我们的时间工作起到了重要的作用。 1 979年至 1 980年间 ,陕西天文台没有铯原子钟 ,氢频标曾作为基准钟 ,为我台原子时尺度的建立立下首功。 1 983年后 ,长期性能得到改进。1 993年 ,在我国氢原子钟同行中 ,率先在国际时间局取到权。随着科学技术的发展 ,对时间工作精度的要求日益提高 ,陕西天文台仍然需要世界一流水平的氢原子频标。  相似文献   

2.
一种车载式工程型氢原子种   总被引:2,自引:2,他引:0  
受有关方面委托,上海天台于1991年研制成功一种车载式工程型氢原子钟。该标准于去年经多种运输工具转运,长途跋涉运到我国西北某地执行任务。实地使用表明,该标准结构可靠,性能良好。圆满地完成了任务,本简述该种车载式工程型氢原子标准的设计特点和性能指标。  相似文献   

3.
本介绍在某工程上应用的上海天台工程型氢频标10ms级频率稳定度的改善措施和采样时间为10ms时,对氢频标频率稳定度测量的结果。  相似文献   

4.
高精度GPS时间传递测定和校准原子钟频率偏差   总被引:1,自引:0,他引:1  
描述了高精度GPS时间传递进行原子钟频率偏差测定和校准的方法,并介绍了上海天台氢原子钟频率偏差的测试结果,同时比较了两种不同定时接收机(精密的和轻便的)确定原子钟频率偏差的长期测频能力。采用合适的数据处理方法,可以减少SA效应的影响,提高长期测频精度2-4倍,精密GPS定时接收机在1-30天内的校频水平为1.5×10^-13-1.0×10^-14 ,轻便GPS定时接收机在1-10天内的校频水平为2×10^-12-2×10^-13。  相似文献   

5.
1976年,NBS 提出了采用射频检测的被动型氢原子频标的设计,经过几年的研制实践证明,这种有腔频伺服的被动型氢原子频标具有优良的长期频率稳定度性能,由于被动型氢原子频标无需满足振荡条件,腔的 Q 值可以选得较低,可以做成介质腔或其它结构形式的腔,缩小腔的体积,易实现氢原子频标的小型化。NBS 的小型化氢原子频标亦已制成,用陶瓷作腔介质,腔直经为14.6cm,高为13.7cm,腔的无载 Q 为600,激射器容积仅为20升。此小型化氢原子频标稳定度为5×10~(-15)/7天,漂移为1.2±5×10~(-18)/天,守时能力为5±3ns/7天。  相似文献   

6.
本文介绍了陕西天文台守时用氢原子钟(H2)的改进、分项误差、准确度及在国际时间局(BIPM)公报中取权情况.H2自1991年开始连续运转至今已两年多了。1991年3月开始每月向BIPM报送数据,1991年9月开始取权1.H2是我国唯一的一台在BIPM公报上取权的氢钟.  相似文献   

7.
法国集中力量开展了光频标和氢脉泽的研制工作,重点放在潜力很大的光频标上。交谈中从国际时间局(BIH)主席Guinot到频标实验室的研究人员普遍认为到本世记末铯钟仍然是国际通用的时间频率标准,然而他们在自己是否需要研制大铯钟这个问题上一直比较犹豫,没有做大铯钟的计划。各时间工作的天文台均采用美HP5061A商品型小  相似文献   

8.
SOHM-4型氢原子钟的设计改进与初步性能   总被引:1,自引:3,他引:1  
氢原子钟是一种最稳定的 (除极短测量时间间隔之外 )频率标准 ,但是环境温度变化及微波谐振腔老化会引起原子钟输出频率的变化 ,从而导致氢原子钟长期性能变差。为了减小这些影响 ,可借助一种自动调谐器来确保谐振腔的频率始终工作在所需的频率上 ,并采用新的温度控制系统来改善氢原子钟的长期性能。针对这些年来许多氢钟出现的有关问题 ,上海天文台在借鉴国外氢钟实验室经验的基础之上 ,对原有氢钟进行了技术改造 ,并为国家授时中心研制了SOHM - 4型氢原子钟。对该型氢原子钟技术改造特点作了介绍 ,并给出了期望的性能指标及初步的测试结果  相似文献   

9.
为了比较用于守时工作的时间间隔计数法和双混频时差测量法,分析了国家授时中心时频基准实验室的两种测量比对设备(SR620时间间隔计数器和PCOMP多通道相位比较仪)对同一组原子钟进行测量时所得到的结果(钟的速率、RMS、测量精度和稳定度)。分析所得的主要结论是:双混频时差测量法具有更高的比对精度,更适用于氢原子钟短期(τ≤5 d)稳定度的测量。  相似文献   

10.
陕西天台BPM短波授时台搬迁后,其时频控制与监测工作从原BPM发播钟房转为由监控室监控房承担。介绍了新的控制系统原理与方法,并对发播的BPM时号精度作了分析。  相似文献   

11.
上海天文台研制的型号为SOHM-3和SOHM-4的3台氢原子钟在中国科学院国家授时中心(NTSC)已经运行了一年多时间。收集了每个氢原子钟与NTSC主钟的时间比对数据。数据的分析结果给出了这几台氢钟在不同采样间隔上的频率稳定度,也显示出1台氢钟明显的相位跳变,讨论了这种相位跳变的原因。比较了这3台氢钟和从美国进口的Symmetricom公司制造的氢钟的频率稳定度的温度变化效应,指出了上海天文台研究制的氢钟存在的主要问题。  相似文献   

12.
本简要介绍了上海天台氢原子钟新电离源的基本原理及初步工作结果。  相似文献   

13.
钟房环境参数的控制对多铯原子钟的工作状态起着至关重要的作用。对陕西天台钟房改造后加装的两台HIROSS空调的运行情况作一介绍,并分析了HIROSS空调控制的Cs08房间温度变化大的原因,经过对地下室风道的改造,达到了预期的效果。  相似文献   

14.
长期连续工作的轻便激光系统是实现实用的光抽运铯束频标的关键。本文作者研制的半导体激光系统采用了单片机数字辅助锁定和计算机控制技术成功地实现了激光频率的自动锁定和长期连续工作。两套激光系统分别工作在抽运跃迁频率和检测跃迁频率上,与小型密封铯束管及频标电路共同组装成一台光抽运铯束频标。这台频标已经正常连续工作了两年多。技术指标达到原HP5061小铯钟的水平。据知,这是我国第一台能够长期连续工作的光抽运小铯钟,也是世界上第一台连续工作两年多的光抽运小铯钟。  相似文献   

15.
主动型氢原子钟是时间尺度建立和保持的主要频率源,具有短期稳定度高及相位噪声低等特性,目前在国际原子时TAI (International Atomic Time)及各地方时间尺度中的作用日益重要.首先结合主动型氢原子钟内部状态参数,分析状态参数与氢原子钟比对数据的相关性,提出了氢原子钟性能监测方法.其次,针对氢原子钟性能特点,在衡量氢原子钟性能最主要的两方面,即频率稳定度及"可预测性"方面,给出了氢原子钟性能评估方法,并利用该方法对目前国际通用的两种主动型氢原子钟(CH1-75型及MHM-2010型)进行性能评估.原子钟状态参数与比对数据联合分析结果表明,状态参数监测可以有效预报钟性能的变化.原子钟频率稳定度及"可预测性"评估结果表明,中、长期稳定度越高的原子钟"可预测性"也越好. BIPM (Bureau International des Poids et Measures)权重验证结果表明,基于BIPM公布数据以及基于2次模型两种预报方法计算出来的钟"可预测性"均与BIPM公布的权重相吻合,可以作为钟"可预测性"的定量评估方法.  相似文献   

16.
氢钟和铯钟作为两种不同类型的频标,从统计角度上来说,它们在短期和长期频率稳定度方面的表现为时间频率领域中的学者们共识.随着技术的改进氢钟近年来在长稳方面有所提高.根据中国科学院国家授时中心(NTSC)新进口的2台美国氢钟(Sigma T)近一年来实验数据的分析,定量说明氢钟不同采样间隔的频率稳定度,并与铯钟的性能做比较.同时根据这两种类型频标的性能取长补短,探讨一组铯钟和两台氢钟联合守时的方案和地方原子时计算方法.  相似文献   

17.
上海天文台时间频率研究室以原有被动型氢钟物理部分为基础,开展了脉冲微波式氢原子钟的研究。设计电路产生2个相干微波脉冲,连续激励氢原子跃迁,模拟双腔共振,使氢原子发生Ramsey干涉,压缩氢原子跃迁谱线宽度,以期提高氢原子钟短期稳定度指标。具体做法为:用DDS产生扫频电路,混频生成1.420 405 GHz激励信号后,再用CPLD产生脉冲时序控制数字衰减器,将激励信号衰减为脉冲形式,激励氢原子发生Ramsey干涉,导出微波信号并进行相关处理就可以产生Ramsey条纹。已观测到Ramsey干涉条纹,其中心峰宽度为1.2 Hz,相比传统被动型氢原子钟压缩了60%。  相似文献   

18.
介绍了上海天台氢钟的研制现状及其应用情况,展望了其潜在应用前景。对目前氢钟小型化国内外研究现状、我国进行小型氢钟的研制方案、拟解决的关键问题也进行了论述。同时给出了小型氢钟的预期性能指标。  相似文献   

19.
氢原子钟钛泵高压电源的改进   总被引:1,自引:0,他引:1  
本文介绍了氢原子钟钛泵的高压电压及氢原子钟氢流量的自动控制。  相似文献   

20.
基于氢原子微波激射器(氢脉泽)的主动型氢原子钟(氢钟)拥有极好的中短期频率稳定度,而原子储存泡是氢脉泽的关键技术。位于微波谐振腔内的原子储存泡中的氢原子系综与电磁场相互作用。简述了氢原子系综与电磁场相互作用的动力学过程、氢脉泽和主动型氢原子钟的相位噪声,还介绍了原子储存、原子与原子的自旋交换碰撞、原子与泡壁的碰撞和磁场不均匀弛豫等主要弛豫过程。并概述了在腔频的自动调谐方法、双选态系统方面的发展和电离源、真空系统等技术方面的改进。最后,讨论了氢钟的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号