首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temporal cvolution of relalivistic electrons in radio jets is obtained by numerically solving the kinetic equation of the interaction between charged particles and Alfven turbulence, including synchrotron radiation loss. The energy of relativistic eieclrons can be accelerated to as high as Lorentz factor r-106. The energy spectrum of energetic eietrons is a power law, and the acceleration time is about 1012-1014 seconds. The energy spectum index of electrons is almost indcpcnded on the Alfven wave spectrum index and synchrotron loss, The latter affects the energy up-limit of acceleration.  相似文献   

2.
The generation of wake field in a cold plssma by a relativistic electron beam is studied, cases with relativistic as well as nonrelalivistic background plasma effects are compared. Tn the latter case, we also treat the problem analytically ignoring nonlinear plasma effects.  相似文献   

3.
Stochastic acceleration of an electron in the ionosphere by a standing wave is discussed in the context of the relativistic Hamiltonian formulism. Analysis shows trat the stochasticity is due to the overlap of the two resonances of the electron in the striding wave. The equations of motion arc solved by use of Adams' expector-correcior methods o trace the stochastic motion and stochastic acceleration of the electron.  相似文献   

4.
The Plasma-maser instablility of Langmuir wave or Em wave in multicom-ponent plasma with stationary charged particulates is considered.The up-conversion of the wave evergy from low-frequency waves to the high-frequency waves is much enhanced owing to the deeper energy exchange between resonant waves and particles in dusty plasma.This results should be useful to interpret the anomalous high-frequency radiation phenomena in laboratory and astrophysical dusty plasma.  相似文献   

5.
We investigate the forming of gamma-ray burst pulses with a simple one-dimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.  相似文献   

6.
NRAO 150 is a very special radio quasar in which prominent non-ballistic superluminal motion has been observed in its inner-jet region. We apply model-fittings to the kinematics of the superluminal knots(trajectory, distance from the core and apparent velocity) in terms of a helical precessing jet-nozzle model.Five cases are considered in which the angle between the jet axis and the line of sight is assumed to be 6?,3?, 1?, 0.6? and 0.12?, respectively. It is shown that the superluminal components have intrinsic acceleration in the innermost regions(≤0.2 mas from the core). The phenomenon of precessing nozzle/trajectory can be understood on the basis of relativistic magnetohydrodynamic theories for relativistic jets.  相似文献   

7.
In a real medium which has oscillations, the perturbations can cause an energy transfer between different modes. A perturbation, which is interpreted as an interaction between the modes, is inferred to be mode coupling. The mode coupling process in an inhomogeneous medium such as solar spicules may lead to the coupling of kink waves to local Alfv′en waves. This coupling occurs in practically any conditions when there is smooth variation in density in the radial direction. This process is seen as the decay of transverse kink waves in the medium. To study the damping of kink waves due to mode coupling, a 2.5-dimensional numerical simulation of the initial wave is considered in spicules. The initial perturbation is assumed to be in a plane perpendicular to the spicule axis. The considered kink wave is a standing wave which shows an exponential damping in the inhomogeneous layer after the mode coupling occurs.  相似文献   

8.
A general formalism of the parametric instabilities in the magnetized inhomogencon plasmas is presented. The gyrokinetic and oscillating center methods are adopted For sin plification dipole pump (k0= 0) approximation is considered in the derivation. The WK approximation is used in the inhomogeneous plasma cases. Some properties and applications of the theory arc discussed.  相似文献   

9.
Tn this article we take our attention to the SRS and some related problems. Analytic model of SRS is given . SRS in inhomogencous plasma and the influence of SBS on SRS arc analysed. SRS coupled with filaments is reviewed. There are three mechanisms by which laser would induce the filaments in plasma, that is, ponderomotivc force (electromagnetic wave pressure) thermal and relalivistie effect. The instability can lead to the breakup of a laser beam into intense filaments.  相似文献   

10.
In this presentation,an overview of the intense laser plasma interaction via computer simulation is presented. One and a half-dimensional and two-dimensional relativistic (or non-relativistic) electromagnetic (or electrostatic) cloud-in-cell plasma simulation series code are developed. The main investigated results on stimulated Raman scattering, stimulated Brillouin scattering, resonance absorption, parametric decay instability and two-plasmon decay arc briefly discussed in both simulations and experiments.  相似文献   

11.
The rapid polarization position angle swing of ~ 180?observed in QSO 1150+812 at 2cm by Kochenov and Gabuzda is quite a regular event. One interesting property of the event is that, during the time of the swing the polarized flux density remained almost constant. We suggest that such an event can be explained in terms of a relativistic thin shock propagating through a uniform helical magnetic field, giving rise to relativistic aberration effects as the transverse field component rotates. The model may also be applicable to other similar events in which variations in polarization are not accompanied by variations in total flux density.  相似文献   

12.
A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understand-ing that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point. c) The effects of spin, orbital rota-tion and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered. d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M and one 5M star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.  相似文献   

13.
The glitch size, △ν/ν, inter-glitch time interval, ti, and frequency of glitches in pulsars are key parameters in discussing glitch phenomena. In this paper, the glitch sizes and inter-glitch time intervals are statistically analyzed in a sample of 168 pulsars with a total of 483 glitches. The glitches are broadly divided into two groups. Those with △ν/ν 10~(-7) are regarded as small size glitches, while those with△ν/ν≥ 10~(-7) are considered as relatively large size glitches. In the ensemble of glitches, the distribution of△ν/ν is seen to be bimodal as usual. The distribution of inter-glitch time intervals is unimodal and the interglitch time intervals between small and large size glitches are not significantly different from each other.This observation shows that inter-glitch time intervals are size independent. In addition, the distribution of the ratio △ν/ν : tiin both small and large size glitches has the same pattern. This observation suggests that a parameter which depends on time, which could be the spin-down rate of a pulsar, plays a similar role in the processes that regulate both small and large size glitches. Equally, this could be an indication that a single physical mechanism, which could produce varying glitch sizes at similar time-intervals, could be responsible for both classes of glitch sizes.  相似文献   

14.
In many astrophysical black hole systems, episodic jets of plasma blobs have been observed, which are much faster and more powerful than continuous jets. A magnetohydrodynamical model was proposed by Yuan et al. to study the formation of episodic jets in Sgr A*. By taking Sgr A* and a stellar mass black hole as examples, we modify the model of Yuan et al. by including the effects of relativity, and further study the relativistic motion and expansion of episodic jets of plasma blobs. Then we study the collision between two consecutive ejections in the modified model, and calculate the magnetic energy released in the collision. Our results show two consecutive blobs can collide with each other, and the released magnetic energy is more than 1050 erg,which supports the idea that a gamma-ray burst is powered by the collision of episodic jets, as suggested by Yuan & Zhang.  相似文献   

15.
A tracking control algorithm based on active disturbance rejection controller(ADRC) is proposed to overcome the telescope's mount fluctuation. The fluctuations are caused by internal and external disturbance when the large aperture telescope runs at ultra-low speed with direct drive. According to the high-precision and high-stability requirements of a large aperture telescope, the ADRC position controller is designed based on segmented arc Permanent Magnet Synchronous Motors(arc PMSMs). The tracking differentiator of ADRC is designed to undergo a transition process to avoid overshoot in the position loop.The speed of target tracking process is observed by the extended state observer and the position information in the system is estimated in real time. The current control variable of the segmented arc PMSM is generated by implementing a non-linear state error feedback control law. The simulation results demonstrate that the proposed control strategy can not only accurately estimate the position and speed of the tracking target, but also estimate the disturbance to compensate the control variables. Experiments showed that the speed error is less than 0.05′′s~(-1) when using the ADRC, and it can realize high tracking performance when compared with PID controller, which improves the robustness of a large aperture telescope control system.  相似文献   

16.
The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained.The numerical results show that the charge q and radius ρ0of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.  相似文献   

17.
The China Seismo-Electromagnetic Satellite(CSES) will investigate iono-magnetospheric disturbance and will monitor the temporal stability of the inner Van Allen radiation belts.In particular,the mission aims at confirming the existences of a temporal correlation between the occurrence of earthquakes and the observation of electromagnetic disturbances, plasma fluctuations and anomalous fluxes of high-energy particles precipitating from the inner Van Allen belt in space.The high energy detector of the High Energy Particle Package(HEPP-H) is a payload onboard CSES and is designed for detecting electrons(2–50 MeV) and protons(20–200 MeV) in its 500 km orbit above Earth.CSES was launched in February 2018.In this paper, the instrumentation and development of the HEPP-H calorimeter are described.The calibration with beam particles(electrons and protons) is discussed in detail.  相似文献   

18.
Today's challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field(IMF) conditions. Correlative studies between geomagnetic storms(GMSs)and the various interplanetary(IP) field/plasma parameters have been performed to search for the causes of geomagnetic activity and develop models for predicting the occurrence of GMSs, which are important for space weather predictions. We find a possible relation between GMSs and solar wind and IMF parameters in three different situations and also derived the linear relation for all parameters in three situations.On the basis of the present statistical study, we develop an empirical model. With the help of this model, we can predict all categories of GMSs. This model is based on the following fact: the total IMF Btotalcan be used to trigger an alarm for GMSs, when sudden changes in total magnetic field Btotaloccur. This is the first alarm condition for a storm's arrival. It is observed in the present study that the southward Bzcomponent of the IMF is an important factor for describing GMSs. A result of the paper is that the magnitude of Bzis maximum neither during the initial phase(at the instant of the IP shock) nor during the main phase(at the instant of Disturbance storm time(Dst) minimum). It is seen in this study that there is a time delay between the maximum value of southward Bzand the Dst minimum, and this time delay can be used in the prediction of the intensity of a magnetic storm two-three hours before the main phase of a GMS. A linear relation has been derived between the maximum value of the southward component of Bzand the Dst, which is Dst =(-0.06) +(7.65)Bz+ t.Some auxiliary conditions should be fulfilled with this, for example the speed of the solar wind should, on average, be 350 km s-1 to 750 km s-1, plasma β should be low and, most importantly, plasma temperature should be low for intense storms. If the plasma temperature is less than 0.5 × 106 K then the Dst value will be greater than the predicted value of Dst or if temperature is greater than 0.5 × 106 K then the Dst value will be less(some nT).  相似文献   

19.
Through solving the single electron equation of motion and the Fokker-Planck equation including the terms of electric field strength and ion-acoustic turbulence, we study the influence of the ion-acoustic wave on the electron acceleration in turbulent reconnecting current sheets. It is shown that the ion-acoustic turbulence which causes plasma heating rather than particle acceleration should be considered. With typical parameter values, the acceleration time scale is around the order of 10^-6 s, the accelerated electrons may have approximately a power-law distribution in the energy range 20 ~100 keV and the spectral index is about 3~10, which is basically consistent with the observed hard X-ray spectra in solar flares.  相似文献   

20.
Considering the fact that the general theory of relativity has become an in- extricable part of deep space missions, we investigate the relativistic transformation between the proper time of an onboard clock τ and the Geocentric Coordinate Time (TCG) for Mars missions. By connecting τ with this local timescale associated with the Earth, we extend previous works which focus on the transformation between τ and the Barycentric Coordinate Time (TCB). (TCB is the global coordinate time for the whole solar system.) For practical convenience, the relation between τ and TCG is recast to directly depend on quantities which can be read from ephemerides. We find that the difference between τ and TCG can reach the level of about 0.2 seconds in a year. To distinguish various sources in the transformation, we numerically calculate the contributions caused by the Sun, eight planets, three large asteroids and the space- craft. It is found that if the threshold of 1 microsecond is adopted, this transformation must include effects due to the Sun, Venus, the Moon, Mars, Jupiter, Saturn and the velocities of the spacecraft and Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号