首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The development of high-contrast capabilities has long been recognized as one of the top priorities for the VLTI. As of today, the VLTI routinely achieves contrasts of a few 10??3 in the near-infrared with PIONIER (H band) and GRAVITY (K band). Nulling interferometers in the northern hemisphere and non-redundant aperture masking experiments have, however, demonstrated that contrasts of at least a few 10??4 are within reach using specific beam combination and data acquisition techniques. In this paper, we explore the possibility to reach similar or higher contrasts on the VLTI. After reviewing the state-of-the-art in high-contrast infrared interferometry, we discuss key features that made the success of other high-contrast interferometric instruments (e.g., integrated optics, nulling, closure phase, and statistical data reduction) and address possible avenues to improve the contrast of the VLTI by at least one order of magnitude. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 \(\upmu \)m), a sweet spot to image and characterize young extra-solar planetary systems. Finally, we address the science cases of a high-contrast VLTI imaging instrument and focus particularly on exoplanet science (young exoplanets, planet formation, and exozodiacal disks), stellar physics (fundamental parameters and multiplicity), and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed. This project is called Hi-5 for High-contrast Interferometry up to 5 μm.  相似文献   

2.
We present the results of our long-term photometric and spectroscopic observations at the Russian–Turkish RTT-150 telescope for the optical counterpart to one of the best-known sources, representatives of the class of fast X-ray transients, IGR J17544-2619. Based on our optical data, we have determined for the first time the orbital and physical parameters of the binary system by the methods of Doppler spectroscopy.We have calculated theoretical spectra of the optical counterpart by applying non- LTE corrections for selected lines and obtained the parameters of the stellar atmosphere (T eff = 33 000 K, log g = 3.85, R = 9.5 R , and M = 23 M ). The latter suggest that the optical star is not a supergiant as has been thought previously.  相似文献   

3.
Previously, we have considered the equations of motion of the three-body problem in a Lagrange form (which means a consideration of relative motions of 3-bodies in regard to each other). Analysing such a system of equations, we considered the case of small-body motion of negligible mass m 3 around the second of two giant-bodies m 1, m 2 (which are rotating around their common centre of masses on Kepler’s trajectories), the mass of which is assumed to be less than the mass of central body. In the current development, we have derived a key parameter η that determines the character of quasi-circular motion of the small third body m 3 relative to the second body m 2 (planet). Namely, by making several approximations in the equations of motion of the three-body problem, such the system could be reduced to the key governing Riccati-type ordinary differential equations. Under assumptions of R3BP (restricted three-body problem), we additionally note that Riccati-type ODEs above should have the invariant form if the key governing (dimensionless) parameter η remains in the range 10?2 Open image in new window 10?3. Such an amazing fact let us evaluate the forbidden zones for Moon’s orbits in the inner solar system or the zones of distances (between Moon and Planet) for which the motion of small body could be predicted to be unstable according to basic features of the solutions of Riccati-type.  相似文献   

4.
For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.  相似文献   

5.
Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions (V >13 m , μ > 300 mas yr?1) for which the “duplicate source” flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m “Saturn” telescope (2016–2017). We have revealed a total of 138 binary candidates (nine of them from the “Saturn” telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δm have been estimated for almost all of the revealed binary systems. For most stars 1.5′′ < ρ < 2.5′′, while Δm <1.5m.  相似文献   

6.
Observations of the solar photosphere from the ground encounter significant problems caused by Earth’s turbulent atmosphere. Before image reconstruction techniques can be applied, the frames obtained in the most favorable atmospheric conditions (the so-called lucky frames) have to be carefully selected. However, estimating the quality of images containing complex photospheric structures is not a trivial task, and the standard routines applied in nighttime lucky imaging observations are not applicable. In this paper we evaluate 36 methods dedicated to the assessment of image quality, which were presented in the literature over the past 40 years. We compare their effectiveness on simulated solar observations of both active regions and granulation patches, using reference data obtained by the Solar Optical Telescope on the Hinode satellite. To create images that are affected by a known degree of atmospheric degradation, we employed the random wave vector method, which faithfully models all the seeing characteristics. The results provide useful information about the method performances, depending on the average seeing conditions expressed by the ratio of the telescope’s aperture to the Fried parameter, \(D/r_{0}\). The comparison identifies three methods for consideration by observers: Helmli and Scherer’s mean, the median filter gradient similarity, and the discrete cosine transform energy ratio. While the first method requires less computational effort and can be used effectively in virtually any atmospheric conditions, the second method shows its superiority at good seeing (\(D/r_{0}<4\)). The third method should mainly be considered for the post-processing of strongly blurred images.  相似文献   

7.
We propose a strategy for detecting and analyzing optical afterglows (OAs) of long gamma-ray bursts (GRBs) without the need to obtain their light curves. This approach is useful for the Gaia satellite, which provides sampled optical ultra-low-dispersion spectroscopic observations of the sky. For this purpose, we show that most OAs of long GRBs display specific values of some of their color indices, representing synchrotron emission of the jet. They are stable in time during the event. These indices, which can be determined from the spectra, are very similar for the ensemble of OAs with redshift z < 3.5 and display a strong clustering in some color-color diagrams. These indices also enable to constrain the properties of the local interstellar medium of GRBs. The long-lasting mapping of the sky with the Gaia instruments also gives us a hope to search for the so-called orphan afterglows, which, according to some authors, can be considerably more numerous than OAs of the observed GRBs. We also show how to resolve OAs from other transients in the Gaia data. The color indices and the properties of the quiescent sources (host galaxies of OAs detectable later by the large ground-based telescopes at the co-ordinates of the OA determined by Gaia) would tell us which one, among transients detected by Gaia, is a GRB OA.  相似文献   

8.
In 2013–2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON ~ 11.1 e?, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters (FWHM = 250 Å) uniformly covering the 4000–9000 Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000–7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to RAB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.  相似文献   

9.
We present the results of JHKLM-photometry for the symbiotic Mira star candidate V 335 Vul. Based on the average flux data, supplemented by IRAS, MSX, AKARI, and WISE mid-IR observations, we calculated a model of a spherically symmetric dust envelope of the star, made up of amorphous carbon and silicon carbide particles. The optical depth of the envelope in the visible range with a dust temperature at the inner boundary of T1 = 1300 K is τ V = 0.58. For an envelope expansion velocity of 26.5 km s?1, the estimated mass loss rate is equal to 5.7 × 10?7M yr?1.  相似文献   

10.
The solar neutron detector Space Environment Data Acquisition Equipment – Attached Payload (SEDA-FIB) onboard the International Space Station (ISS) detected several events from the solar direction associated with three large solar flares observed on 05 (X1.1), 07 (X5.4), and 09 (M6.3) March 2012. In this study, we focus on the interesting event of 05 March, present the temporal profiles of the neutrons, and discuss the physics that may be related to a possible acceleration scenario for ions above the solar surface. We compare our data with images of the flares obtained by the ultraviolet telescope Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO).  相似文献   

11.
Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.  相似文献   

12.
The experience gained with the current generation of X-ray telescopes like Chandra and XMM-Newton has shown that low energy “soft” protons can pose a severe threat to the possibility to exploit scientific data, reducing the available exposure times by up to 50% and introducing a poorly reproducible background component. These soft protons are present in orbits outside the radiation belts and enter the mirrors, being concentrated towards the focal plane instruments, losing energy along their path and finally depositing their remaining energy in the detectors. Their contribution to the residual background will be even higher for ATHENA with respect to previous missions, given the much higher collecting area of the mirrors, even if the instruments will likely suffer no significant radiation damage from this particles flux. As a consequence this soft proton flux shall be damped with the use of a magnetic diverter to avoid excess background loading on the WFI or X-IFU instruments. We present here a first complete evaluation of this background component for the two focal plane instruments of the ATHENA mission in absence of a magnetic diverter, and derive the requirements for such device to reduce the soft protons induced background below the level required to enable the mission science. We estimate the soft proton flux expected in L2 for the interplanetary component and for the component generated locally by acceleration processes in the magnetotail. We produce a proton response matrix for each of the two instruments of ATHENA focal plane, exploiting two independent Monte Carlo simulations to estimate the optics concentration efficiency, and Geant4 simulations to evaluate the energy loss inside the radiation filters and deposited in the detector. With this modular approach we derive the expected fluxes and spectra for the soft protons component of the background. Finally, we calculate the specifics of a magnetic diverter able to reduce such flux below the required level for both X-IFU and WFI.  相似文献   

13.
We investigate the variation of the fraction of galaxies with suppressed star formation (MK < ?21 . m 5) and early-type galaxies (fracE) of the “red sequence” along the projected radius in six galaxy clusters:Coma (A1656), A1139, and A1314 in the Leo supercluster region (z ≈ 0.037) and A2040, A2052, A2107 in the Hercules supercluster region (z ≈ 0.036). According to SDSS (DR10) data, fracE is the highest in the central regions of galaxy clusters and it is, on the average, equal to 0.62 ± 0.03, whereas in the 2–3R/R200c interval and beyond the Rsp ≈ 0.95 ± 0.04 R200m radius that we inferred from the observed profile fracE is minimal and equal to 0.25 ± 0.02. This value coincides with the estimate fracE = 0.24 ± 0.01 that we inferred for field galaxies located between the Hercules and Leo superclusters at the same redshifts. We show that the fraction of galaxies with suppressed star formation decreases continuously with cluster radius from 0.87 ± 0.02 in central regions down to 0.43 ± 0.03 in the 2–3 R/R200c interval and beyond Rsp, but remains, on the average, higher than 26% than the corresponding fraction for field objects. This decrease is especially conspicuous in the galaxy mass interval log M* [M] = 9.5–10. We found that galaxies with ongoing star formation have average clustercentric distances 1.5–2.5 R/R200c and that their radial-velocity dispersions are higher than those of galaxies with suppressed star formation.  相似文献   

14.
We describe the properties of Mini-MegaTORTORA (MMT-9) nine-channel wide-field optical sky monitoring system with subsecond temporal resolution. This instrument can observe sky areas as large as 900 deg2, perform photometry in three filters close to Johnson BV R system and polarimetry of selected objects or areas with 100–300 deg2 sizes. The limiting magnitude of the system is up to V = 11m for 0.1 s temporal resolution, and reaches V = 15m in minute-long exposures. The system is equipped with a powerful computing facility and dedicated software pipeline allowing it to perform automatic detection, real-time classification, and investigation of transient events of different nature located both in the near- Earth space and at extragalactic distances. The objects routinely detected by MMT-9 include faint meteors and artificial Earth satellites.We discuss astronomical tasks that can be solved using MMT-9, and present the results of the first two years of its operation. In particular, we report the parameters of the optical flare detected on June 25, 2016, which accompanied the gamma-ray burst GRB160625B.  相似文献   

15.
We study relation between stellar mass and halo mass for high-mass halos using a sample of galaxy clusters with accurate measurements of stellar masses from optical and ifrared data and total masses from X-ray observations. We find that stellar mass of the brightest cluster galaxies (BCGs) scales as M*,BCG ∝ M 500 αBCG with the best fit slope of αBCG ≈ 0.4 ± 0.1. We measure scatter of M*,BCG at a fixed M500 of ≈0.2 dex. We show that stellar mass-halo mass relations from abundance matching or halo modelling reported in recent studies underestimate masses of BCGs by a factor of ~2?4. We argue that this is because these studies used stellar mass functions (SMF) based on photometry that severely underestimates the outer surface brightness profiles of massive galaxies. We show that M*?M relation derived using abundance matching with the recent SMF calibration by Bernardi et al. (2013) based on improved photometry is in a much better agreement with the relation we derive via direct calibration for observed clusters. The total stellar mass of galaxies correlates with total mass M500 with the slope of ≈0.6 ± 0.1 and scatter of 0.1 dex. This indicates that efficiency with which baryons are converted into stars decreases with increasing cluster mass. The low scatter is due to large contribution of satellite galaxies: the stellar mass in satellite galaxies correlates with M500 with scatter of ≈0.1 dex and best fit slope of αsat ≈ 0.8 ± 0.1. We show that for a fixed choice of the initial mass function (IMF) total stellar fraction in clusters is only a factor of 3?5 lower than the peak stellar fraction reached in M ≈ 1012M halos. The difference is only a factor of ~1.5?3 if the IMF becomes progressively more bottom heavy with increasing mass in early type galaxies, as indicated by recent observational analyses. This means that the overall efficiency of star formation in massive halos is only moderately suppressed compared to L* galaxies and is considerably less suppressed than previously thought. The larger normalization and slope of the M*?M relation derived in this study shows that feedback and associated suppression of star formation in massive halos should be weaker than assumed in most of the current semi-analytic models and simulations.  相似文献   

16.
We describe a device (adapter) for off-axis guiding and photometric calibration of wide-angle spectrographs operating in the prime focus of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. To compensate coma in off-axis star images an achromatic lens corrector is used, which ensures maintaining image quality (FWHM) at a level of about 1″ within 15′ from the optical axis. The device has two 54″-diameter movable guiding fields, which can move in 10′ × 4.′5 rectangular areas. The device can perform automatic search for guiding stars, use them to control the variations of atmospheric transmittance, and focus the telescope during exposure. The limiting magnitude of potential guiding stars is m R ~ 17m. The calibration path whose optical arrangement meets the telecentrism condition allows the spectrograph to be illuminated both by a source of line spectrum (a He–Ne–Ar filled lamp) and by a source of continuum spectrum. The latter is usually represented either by a halogen lamp or a set of light-emitting diodes, which provide illumination of approximately uniform intensity over the wavelength interval from 350 to 900 nm. The adapter is used for observations with SCORPIO-2 multimode focal reducer.  相似文献   

17.
We examine the dependence of the total hydrogen mass M HI in late-type star-forming galaxies on rotation velocity V rot and optical size D 25 or radial scale length R 0 of the disk for two samples of galaxies: (i) isolated galaxies (AMIGA) and (ii) galaxies with edge-on disks (flat galaxies according to Karachentsev et al.). M HI given in the HYPERLEDA database for flat galaxies have turned out to be, on average, overestimated by ~0.2 dex compared to isolated galaxies with similar V rot or D 25, which is apparently due to an overestimation of the self-absorption in the HI line. The hydrogen mass in the galaxies of both samples closely correlates with the total specific angular momentum of the galactic disk J, which is proportional to V rot D 25 or V rot R 0, with the low-surface-brightness galaxies lying along the common V rot R 0 sequence. We discuss the possibility of explaining the relationship between M HI and V rot D 25 by assuming that the gas mass in the disk is regulated by the marginal gravitational stability condition for the gas layer. Comparison of the observed and theoretically expected dependences leads us to conclude that either the gravitational stability corresponds to higher values of the Toomre parameter than is usually assumed, or the threshold stability condition formost galaxies was fulfilled only in the past, when the gasmass in the disks was a factor of 2–4 higher than that at present (except for the galaxies with an anomalously high observed HI content). The latter condition requires that for most galaxies the conversion of gas into stars be not compensated by the external accretion of gas onto the disk.  相似文献   

18.
In our previous articles (Chertok et al. in Solar Phys. 282, 175, 2013; Chertok et al. in Solar Phys. 290, 627, 2015), we presented a preliminary tool for the early diagnostics of the geoeffectiveness of solar eruptions based on the estimate of the total unsigned line-of-sight photospheric magnetic flux in accompanying extreme ultraviolet (EUV) arcades and dimmings. This tool was based on the analysis of eruptions observed during 1996?–?2005 with the Extreme-ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). Empirical relationships were obtained to estimate the probable importance of upcoming space weather disturbances caused by an eruption, which just occurred, without data on the associated coronal mass ejections. In particular, it was possible to estimate the intensity of a non-recurrent geomagnetic storm (GMS) and Forbush decrease (FD), as well as their onset and peak times. After 2010?–?2011, data on solar eruptions are obtained with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We use relatively short intervals of overlapping EIT–AIA and MDI–HMI detailed observations, and additionally, a number of large eruptions over the next five years with the 12-hour cadence EIT images to adapt the SOHO diagnostic tool to SDO data. We show that the adopted brightness thresholds select practically the same areas of arcades and dimmings from the EIT 195 Å and AIA 193 Å image, with a cross-calibration factor of 3.6?–?5.8 (5.0?–?8.2) for the AIA exposure time of 2.0 s (2.9 s). We also find that for the same photospheric areas, the MDI line-of-sight magnetic flux systematically exceeds the HMI flux by a factor of 1.4. Based on these results, the empirical diagnostic relationships obtained from SOHO data are adjusted to SDO instruments. Examples of a post-diagnostics based on SDO data are presented. As before, the tool is applicable to non-recurrent GMSs and FDs caused by nearly central eruptions from active regions, provided that the southern component of the interplanetary magnetic field near the Earth is predominantly negative, which is not predicted by this tool.  相似文献   

19.
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments (e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE – Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/(EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument’s individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget (Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.  相似文献   

20.
We present a study of the origin of coronal mass ejections (CMEs) that were not accompanied by obvious low coronal signatures (LCSs) and yet were responsible for appreciable disturbances at 1 AU. These CMEs characteristically start slowly. In several examples, extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory reveal coronal dimming and a post-eruption arcade when we make difference images with long enough temporal separations, which are commensurate with the slow initial development of the CME. Data from the EUV imager and COR coronagraphs of the Sun Earth Connection Coronal and Heliospheric Investigation onboard the Solar Terrestrial Relations Observatory, which provide limb views of Earth-bound CMEs, greatly help us limit the time interval in which the CME forms and undergoes initial acceleration. For other CMEs, we find similar dimming, although only with lower confidence as to its link to the CME. It is noted that even these unclear events result in unambiguous flux rope signatures in in situ data at 1 AU. There is a tendency that the CME source regions are located near coronal holes or open field regions. This may have implications for both the initiation of the stealthy CME in the corona and its outcome in the heliosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号