首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
为简化GNSS大气可降水量(PWV)的计算过程,提高GNSS-PWV实时解算效率,利用2017~2018年长三角地区7个GNSS测站数据,分析GNSS-PWV与对流层延迟(ZTD)、地面气温(T)、地面气压(P)之间的线性关系,通过线性拟合建立PWV直接转换区域模型。实验结果表明:1)PWV与ZTD、P和T之间具有良好的相关性,相关系数分别为0.99、-0.74和0.73;2)基于ZTD的全年单因子PWV模型的RMS为3.07 mm,基于ZTD和T的全年双因子PWV模型RMS为2.35 mm,基于ZTD和P的全年双因子PWV模型RMS为1.18 mm,基于ZTD、T和P的全年多因子PWV模型RMS为0.47 mm,基于ZTD、T和P的分季节多因子PWV模型的平均RMS为0.28 mm,后者预测精度略优。  相似文献   

2.
针对GPT2w模型误差累积所导致的天顶对流层延迟(zenith tropospheric delay, ZTD)和大气可降水量(precipitable water vapor, PWV)精度不高的问题,利用2017年长三角地区7个探空站和2个GNSS站的实测数据检验GPT2w模型获取的气压、温度、水汽压、加权平均温度(Tm)和ZTD等参数的精度,并融合GNSS解算得到的ZTD(GNSS-ZTD)与GPT2w模型获取的气象参数,提高PWV反演精度。结果表明:1)近地面处的气压、温度和水汽压的bias分布在-3~4 mbar、-7~7 K和-9~2 mbar之间,精度较高;2)GPT2w模型获取的Tm在长三角地区适用性较好,年均bias和RMS分别为-1.21 K和6.89 K;3)基于GPT2w模型解算的ZTD的bias和RMS均值分别为1.4 cm和9.4 cm,精度明显低于基于实测气象数据获得的GNSS-ZTD;4)参数融合法计算的PWV与GNSS-PWV精度相当,该方法可用于无实测气象参数时实时获取PWV。  相似文献   

3.
采用线性回归和最小二乘法拟合建立无线电探空可降水量(RS-PWV)与GPS对流层延迟(GPS-ZTD)、地面温度及大气压之间的直接转换模型,并将直接转换模型得到的PWV分别与RS-PWV及GPS反演得到的可降水量(GPS-PWV)进行比较。结果表明,RS-PWV与GPS-ZTD之间存在良好的线性关系,相关系数达0.927 6;RS-PWV与4阶拟合温度和大气压呈现较好的相关性,相关系数分别为0.640 1和-0.626 3;基于ZTD的单阶单因子模型PWV与GPS-PWV的相关系数达到0.969 9;基于ZTD、温度及大气压的单阶多因子模型PWV比基于ZTD的单阶单因子模型PWV精度明显提高,RMS从4.3 mm提高到3.3 mm。  相似文献   

4.
利用长三角地区多个探空站气象资料、GNSS观测数据和GPT3模型,以探空资料的大气可降水量(PWV)为参考值,评估GPT3模型、两种地面气象资料法和GNSS等4种方法计算的PWV精度、可靠性和时效性.结果表明,GPT3模型可实时获取PWV,但精度较低;GNSS-PWV精度最高,但需要实测气象参数,会限制其应用范围;两种...  相似文献   

5.
基于安徽省23个CORS站数据解算天顶对流层延迟(ZTD),评估GPT3+Hopfield和GPT3+Saastamoinen两种对流层组合模型的适用性,并利用探空数据分析GPT3模型估计大气加权平均温度(Tm)和反演大气可降水量(PWV)的精度。结果表明:1)GPT3+Saastamoinen组合模型的ZTD精度优于GPT3+Hopfield组合模型,GPT3模型的ZTD精度具有显著的时空分布特征,皖南精度低于皖北,且春、冬季精度优于夏、秋季;2)在安徽地区,GPT3模型2种格网分辨率的Tm精度基本相当,平均偏差在-2.0 K左右,RMS值在4.5 K左右;3)在安徽地区,基于GPT3模型气象参数反演的PWV(GPT3-PWV)与探空站的PWV有较高的一致性,且同样具有时空变化特征,由皖南向皖北逐渐降低,夏季最大、冬季最小。  相似文献   

6.
利用精密单点定位(PPP)技术处理贵州地基GNSS观测数据,获得高精度天顶对流层延迟(ZTD),进而开展水汽反演获得大气可降水量(PWV)产品。基于斜路径可降水量(SWV),使用自适应联合代数重构算法进行三维水汽层析,空间分辨率优于30 km×30 km,时间分辨率为5 min。以无线电探空数据为参考评估ZTD和PWV精度,其RMS分别为3.55 mm和1.03 mm。以ERA5再分析资料为参考评估三维层析精度,无暴雨发生时,三维层析相对误差不超过10%,偏差最大值为1.03 g/m3。以无线电探空数据为参考评估三维层析精度,层析结果与无线电探空数据的相关系数在0.97以上,具有较好的一致性。贵阳站和威宁站的平均RMS分别优于0.5 g/m3和1.2 g/m3。  相似文献   

7.
选取FES2004、NAO.99b、FES2014b、EOT20、GOT4.10c、TPXO9.5a海潮模型分别对253个陆态网络GNSS测站进行海潮负荷位移(ocean tide loading displacement, OTLD)改正,分析未模型化或模型不准确的OTLD对陆态网络GNSS高程时间序列和天顶对流层延迟(zenith tropospheric delay, ZTD)估计的影响。结果表明,OTLD影响越大,不同海潮模型改正对GNSS高程时间序列的wRMS改善效果和差异越明显,改善效果最高可达52%以上,最大差异可达11%;海潮模型差异造成的GNSS最大混叠信号振幅约为4 mm,对应周期主要为14.8 d、365 d; OTLD与ZTD偏差存在准线性关系,使用的海潮模型实用性越好,两者线性关系越明显;FES2014b模型对GNSS高程时间序列的wRMS、混叠周期、ZTD估计的OTLD改正效果均最优。  相似文献   

8.
针对区域相对高程对Tm模型影响研究领域的空缺,基于已有的对流层顶经验模型,讨论区域相对高程对Tm模型的影响,并在此基础上构建中国区域的h0Tm回归模型,同时建立青藏高原地区的区域模型h0Tm-Qz。模型检验结果表明:1)以ERA5格网数据为参考值,h0Tm模型的RMS为2.43 K,相比于Bevis公式和GPT2w-1模型,精度分别提高了1.15 K(32%)和0.63 K(21%);2)以探空数据为参考值,h0Tm模型的RMS为2.48 K,相比于Bevis公式和GPT2w-1模型精度分别提高了1.19 K(32%)和2.06 K(45%),h0Tm模型在中国区域表现出较低的误差和良好的稳定性,尤其是在中国西部地区表现出更为显著的优势;3)顾及区域相对高程的青藏高原区域模型h0Tm-Qz相较于该地区的单因子(Ts)区域模型TsTm-Qz和Bevis公式,精度分别提高了0.54 K(19%)和2.50 K(51%)。  相似文献   

9.
利用小波变换对暴雨过程中GNSS气象要素的初步探索   总被引:1,自引:0,他引:1  
利用小波分解对地基GNSS获取的可降水量(PWV)、气压和对流层延迟(ZTD)等时序进行处理和分析,以暴雨的实际降水量作为判别依据。研究结果表明,1 h间隔PWV与ZTD的小波高频分解系数接近,均能够从中提取暴雨预报特征信息,可用高频ZTD代替PWV进行小波分析;频率在30 min-1h之间的ZTD,预报时间信息应在第1~3层级进行搜寻,30 min以下频率的应在第3~5层级进行搜寻;db4小波分解PWV的暴雨预报阈值可设为-1.2,db4小波分解ZTD的暴雨预报阈值可设置为-0.007,db2小波分解ZTD的暴雨预报阈值可设为-0.01。  相似文献   

10.
针对GNSS气象学中大气加权平均温度(Tm)受时空影响的问题,利用长三角地区7个探空站2015~2017年数据,分析Tm与地面温度(Ts)、水汽压(es)和气压(Ps)的线性关系,并基于最小二乘法进行多元线性拟合,建立长三角地区本地化Tm模型。实验结果表明:1)本地化单因子模型效果优于Bevis模型,且双因子和多因子模型与单因子模型效果相当;2)分季节多因子模型优于全局模型,对秋冬季改善效果最为显著;3)分季节多因子Tm模型计算GNSS大气可降水量(PWV)的效果优于Bevis模型。分季节多因子本地化Tm模型更适用于长三角地区,可获得更准确的Tm和PWV。  相似文献   

11.
根据长三角地区7个探空站基于积分法计算的2016年大气水汽转换系数(K值),利用多元线性拟合分别构建不顾及高程的Emardson-I精化模型和顾及高程的Emardson-H精化模型,并用2017年的K值验证两种模型的精度。实验结果表明,Emardson-H预报模型的MAE和RMS分别为0.001 297和0.001 616,略优于Emardson-I预报模型的0.001 303和0.001 620;基于两种新模型的GNSS-PWV反演精度相当,其MAE和RMS均优于0.6 mm。因此,Emardson-I模型以其无需实测气象参数和无需顾及高程在长三角地区的地基GNSS气象学实时应用中具有更好的效率优势。  相似文献   

12.
针对中国西部地区地形起伏较大等情况,分析大气加权平均温度(Tm)与测站高程、地面温度的关系,利用2014~2016年探空数据,在Bevis模型基础上建立一种与地面温度、高程和季节变化有关的新Tm模型。以2017年探空数据为参考值,对新模型进行精度分析,并与广泛使用的Bevis模型和GPT2w模型进行精度比较。结果表明,以探空数据为参考值,新模型的年均偏差和均方根误差(RMS)分别为-0.08 K和3.89 K,相比Bevis模型、GPT2w-5模型和GPT2w-1模型,其精度(RMS值)分别提高14.3%、20.6%和9.3%。此外,将新Tm模型用于GNSS水汽计算,其水汽计算理论RMS误差和相对误差分别为0.22 mm和1.43%,新模型在中国西部地区的GNSS水汽探测中具有重要的应用价值。  相似文献   

13.
利用香港卫星定位参考站网GNSS观测数据,提取强热带风暴"塔拉斯"与热带风暴"洛克"影响期间各测站天顶方向对流层延迟,反演香港区域大气可降水量;根据香港区域49个天文台气象站提供的实测降雨量数据,分析大气可降水量与实际降雨量的相关性,以及两次台风对香港区域水汽时空分布的不同影响。结果表明,大气可降水量在台风影响前期均上升,在大量降雨后回落,但在连续台风的间歇期间,仍高于台风来临前的水平;水汽累积是大量降雨的前提条件,当水汽累积量相近时,水汽累积时长与累积降雨量呈正相关;台风期间大气可降水量值超过65 mm的区域面积与台风等级相关,台风路径对局部水汽分布有一定的影响。  相似文献   

14.
研究东日本地震、汶川地震和玉树地震震中及其附近区域在地震前后的水汽时间序列变化。首先分析震中MODIS水汽序列和震中附近探空站点水汽序列在地震前后的变化;然后基于GNSS ZTD与水汽之间的高相关性,以GNSS ZTD代替GNSS水汽,讨论震源区周围IGS站点的ZTD序列变化。研究发现,震后震中及其附近区域水汽值变化出现异常,且距离越近所受影响越大;水汽不断聚积,达到峰值后发生降水。  相似文献   

15.
利用小波变换与RBF神经网络方法预测河北省GNSS水汽值。首先对GNSS测站水汽序列进行小波分解,然后利用RBF神经网络对小波分解的高频与低频信号进行预测,最后通过实验选择合适的高频与低频信号结果重构获得GNSS水汽值预测值。以实测GNSS水汽值为标准,基于小波变换与RBF神经网络预测的GNSS水汽值精度高于单一RBF神经网络预测精度,但预测结果的精度随着预测时长的增加而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号