首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
岩溶地下水是泰安市城区重要供水水源,近年来随着气候环境变化和人为活动的影响,岩溶地下水水化学特征日趋复杂,但其水化学特征及成因尚不明晰。为识别研究区地下水水化学特征、成因机制,本文采用数理统计方法、离子比值、水化学图解等方法,研究了该区岩溶地下水的水文地球化学特征。结果表明:研究区内岩溶地下水水化学类型主要为HCO3Ca型、HCO3·SO4Ca 型、HCO3·SO4·ClCa型。地下水水化学成分主要受水岩相互作用控制,以溶滤作用为主,地下水中的Ca2+、Na+、HCO-3、SO2-4主要来源于方解石、白云石的碳酸盐岩及石膏、盐岩等蒸发岩的溶解,且存在逆向的阳离子交替吸附作用,导致Ca2+含量增加,Na+含量减少,人为活动影响导致地下水中Cl-、NO-3浓度增加。研究成果为研究区内岩溶地下水的合理开发与保护提供了依据。  相似文献   

2.
平度北部山区位于胶北隆起西南与胶莱盆地的西北部,属鲁东低山丘陵松散岩、碎屑岩、变质岩类为主水文地质大区,胶莱盆地和胶北低山丘陵两个水文地质亚区。开展1∶5万水文地质调查,综合运用物探、水文地质钻探、抽水试验等工作手段,分析了研究区气象水文、地层构造、水文地质条件,划分了松散岩类孔隙水、碎屑岩类孔隙水、碳酸岩类孔隙水和基岩孔隙水4种地下水类型。分别从地形地貌、地层构造、含水层岩性、补径排条件等因素研究地下水富集规律,新发现东柳圈基岩裂隙水富水地段,可作为小型水源地,为城市应急供水。总结了研究区两种蓄水构造,分别为断裂破碎带型和岩性接触带型。通过分析研究区地下水富集规律和不同蓄水构造类型地下水的补径排特征及赋存情况,分析了地下水开采条件,为平度北部山区的找水打井提供技术支持。  相似文献   

3.
沂水县富锶(Sr)地下水分布广泛,白垩纪沂南序列侵入岩的锶(Sr)含量最高,平均含量1013.64×10^-6,其次为白垩纪火山岩,锶(Sr)平均含量为739.18×10^-6,太古代侵入岩、变质岩中的锶(Sr)平均含量为398.99×10^-6,寒武-奥陶纪灰岩、页岩中的锶(Sr)平均含量为201.54×10^-6;碎屑岩类孔隙裂隙水含水岩组地下水锶(Sr)平均含量为0.99mg/L,喷出岩孔洞裂隙水含水岩组地下水锶(Sr)平均含量为0.95mg/L,碳酸盐岩裂隙岩溶水含水岩组地下水锶(Sr)平均含量为0.76mg/L,块状岩类(侵入岩)裂隙水含水岩组地下水锶(Sr)平均含量为0.48mg/L。碎屑岩类孔隙裂隙水含水岩组、喷出岩孔洞裂隙水含水岩组、块状岩类(侵入岩)裂隙水含水岩组地下水中锶(Sr)主要来源为围岩的风化溶解;碳酸盐岩裂隙岩溶水含水岩组地下水中锶(Sr)主要来源于沂南序列构造破碎带和风化带的风化溶解,其次为寒武-奥陶纪灰岩的风化溶解,锶(Sr)强变异性与不同含水层地下水的混合比例有关。  相似文献   

4.
沂蒙缺水地区碳酸盐岩地下水富水性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
沂蒙缺水地区地处山东省中南部,大面积分布泰山群变质岩及各类侵入岩,赋水性极差,生活、生产用水非常困难。通过研究地层岩性、地质构造、地形地貌、补给条件和水动力条件,在地形、构造、岩性复合的有利部位发现蒙阴-桃墟、沂水-姚店子和马牧池等3处裂隙岩溶富水地段,水质良好,具备建设中、小型水源地的条件。认为地层岩性是控制地下水存在的基础、地质构造控制着地下水的运动和赋存条件、地形地貌是影响地下水补给及运动最主要的因素等地下水赋存规律;研究成果对解决区内用水困难具有重要意义。。  相似文献   

5.
以冀中坳陷饶阳凹陷新近系油气分布最富集的留西—留北地区为研究对象,通过对该区新近系地层水及其与油气分布关系的系统分析,明确了新近系地层水的水化学类型及矿化度分布特征,揭示了该区新近系地层水的地球化学特征异常与油气运移、油气分布的内在关系。结果表明:留西—留北地区新近系整体上发育低矿化度的NaHCO3型地层水,地层水矿化度具有由西向东、由北向南逐渐增加的趋势,同时水化学类型由HCO3--Cl--Na+型过渡为Cl--HCO3--Na+型;在油源和断裂条件良好的条件下,新近系地层水异常与油气分布具有良好的对应关系,新近系油气主要在地层水矿化度高于背景值、水化学类型异常及油源断裂发育的地区富集,同时新近系高矿化度Na2SO4型或MgCl2型地层水对油气由深向浅的运聚特征具有重要的指示作用。  相似文献   

6.
在前人取得的水文地质资料的基础上,以水文地质调查、物探勘查、综合分析研究为手段,对烟台市水文地质条件进行了详细的分析研究,根据含水层岩性及地下水类型将研究区划分为松散岩类孔隙含水岩组、碎屑岩类孔隙裂隙含水岩组、碳酸盐岩类岩溶含水岩组、喷出岩类孔洞裂隙含水岩组和岩浆岩、变质岩类裂隙含水岩组。依据地形地貌及岩性构造差异,将研究区划分为山地丘陵和滨海平原2个典型区,分别描述地下水的补给、径流、排泄条件。含水岩组的电性特征与地下水的赋存介质有关,根据赋存介质的不同将研究区地下水类型分为孔隙水、裂隙水和岩溶水三类,并分别总结其电性特征。该文对烟台市含水岩组进行划分,总结不同含水层电性特征,为水资源的进一步开发利用提供科学依据。  相似文献   

7.
在内陆干旱区,作为重要饮用水源的地下水常面临氟含量超标问题。查明内陆干旱区高氟地下水的分布规律,了解氟在地下水中的富集过程及其影响因素,既可丰富高氟地下水的研究体系,也是保证内陆干旱区饮水安全的重要基础。以新疆阿克苏地区典型山前洪积扇——依格齐艾肯河-喀拉玉尔滚河河间地带为研究区,基于水文地球化学调查结果,刻画了高氟地下水的分布区;结合氟离子含量与特征性水化学指标间的关系,揭示了高氟地下水的成因机制。结果表明:①地下水中氟含量的变化范围为0.8~6.1 mg/L,83%的水样氟含量超过《生活饮用水卫生标准》(GB 5749-2006)规定的上限(1.0 mg/L);②总体上,氟含量沿地下水流动路径逐渐增大,低氟地下水(ρ(F-)≤1.0 mg/L)分布在国道314以北的补给区,高氟地下水(ρ(F-)>1.0 mg/L)分布在国道314以南的径流区和排泄区;③高氟地下水的水化学类型以Cl·HCO3-Na型为主,而低氟地下水则以Cl·SO4-Na型为主,高氟地下水相比于低氟地下水优势阴离子偏向于HCO3-;④地下水的pH值范围为7.9~8.9(均值为8.4),表明其处于弱碱环境中。地下水中ρ(F-)与pH值呈正相关,此外构成浅层含水层的上更新统沉积物中含有黑云母、氟磷灰石等矿物,其表面存在一定数量的可交换F-,这表明水中OH-与矿物表面F-间的阴离子交换可能对氟的富集有一定贡献;⑤地下水的F-含量与Ca2+含量呈负相关,即高氟地下水中ρ(Ca2+)小于低氟地下水。考虑到氟化钙(CaF2)是自然界中的主要含氟矿物,也是地下水中氟的主要来源,ρ(F-)与ρ(Ca2+)间的这种负相关指示着高氟地下水中可能存在去Ca2+、Mg2+作用,如阳离子交替吸附或碳酸盐岩沉淀等。研究区地下水样中ρ(F-)与ρ(Mg2+)间也呈负相关关系,且和ρ(F-)与ρ(Ca2+)间的关系高度相似,也佐证了高氟地下水中去Ca2+、Mg2+作用的存在;⑥绝大部分地下水样品都位于氯碱性指数图的负值区域,且ρ(F-)与CAI-1和CAI-2均呈较好负相关,CAI-1和CAI-2都随ρ(F-)的增大而减小,这表明高氟地下水中存在Ca2+、Mg2+与Na+间更强的交换作用,对氟富集起着重要作用。地下水中ρ(F-)与SAR间呈较好正相关关系,且高氟地下水样的SAR均值(5.71)远大于低氟地下水SAR均值(1.67),这也进一步证明高氟地下水中的Ca2+、Mg2+与含水介质的Na+间存在强烈的交替作用,对氟的富集起着重要作用;⑦所有地下水样中的萤石均处于未饱和状态,且萤石的饱和指数(SI)与F-含量间呈现较好的正相关,这表明地下水对含氟矿物(主要是萤石)的持续溶解应是导致研究区地下水中氟富集的主要原因。与之相反,研究区所有地下水样中的方解石均处于过饱和状态(SI>0)。这表明CaCO3的沉淀可能促进了CaF2的溶解,导致地下水中氟离子质量浓度增高;⑧研究区低氟地下水的δ18O值介于-11.20‰~-10.67‰间,平均值为-10.94‰,而高氟地下水的δ18O值介于-11.65‰~-11.21‰间,平均值为-11.49‰,即低氟地下水较高氟地下水富集δ18O。此外,F-质量浓度较低(ρ(F-)≤3.0 mg/L)的地下水样中δ18O值与F-质量浓度呈负相关,即低氟地下水具有更正的δ18O值;F-质量浓度较高(ρ(F-)≥4.8 mg/L)的地下水样中δ18O值与F-质量浓度的相关性不显著,随F-质量浓度的增高,δ18O值基本维持不变。以上表明蒸发浓缩作用对地下水中氟的富集贡献较小;⑨研究区地下水中ρ(F-)/ρ(Cl-)比值与ρ(F-)间呈现正相关,即ρ(F-)/ρ(Cl-)比值随ρ(F-)增高呈增大趋势,这也说明地下水中氟富集的主要原因是含氟矿物的溶解,而不是蒸发浓缩作用。此外,Gibbs图也提供了证据:研究区地下水样基本处于水岩作用主导区域,表明地下水化学特征(包括氟的富集)主要受水岩作用控制,蒸发浓缩影响很小。总之,地下水中氟的富集主要由溶解作用引起,OH-与矿物表面F-间的交换也有贡献,但蒸发浓缩作用影响微弱。含氟矿物持续溶解的驱动机制是阳离子交替吸附(地下水中Ca2+与岩土颗粒表面Na+之间)及方解石沉淀所引起的地下水中Ca2+的衰减。   相似文献   

8.
肥城盆地区域地下水化学特征及水质评价   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解肥城市地下水水化学特征及水质状况,选取20个地下水水质分析数据,综合运用统计分析、Piper三线图,Gibbs图及离子比值等水化学方法,分析了地下水水化学特征,基于模糊综合评价法,对地下水进行了质量评价。结果表明,研究区地下水中阳离子以Ca^2+,Mg^2+为主,阴离子则以HCO^-3,NO^-3,SO 2-4为主,阴、阳离子分别存在HCO^-3>NO^-3>SO 2-4>Cl-和Ca^2+>Mg^2+>Na^+>K^+的关系。TDS介于325.0~1720.0 mg/L之间,均值为741.55 mg/L。地下水呈弱碱性,且属高硬水。地下水化学类型以HCO 3-Ca,HCO 3·SO 4-Ca为主,水-岩作用是地下水水化学组分的主要控制因素,主要受碳酸盐岩的风化溶解控制。研究区地下水以Ⅱ,Ⅲ类水为主,占65%,但Ⅴ类水所占比重也较大,占到了35%。  相似文献   

9.
胶东半岛三面环海,地形起伏较平缓,大部分处于海拔500米以下,属于低山丘陵区。本区由于长期隆起和剥蚀,古生界地层缺失,前寒武纪变质岩及火成岩大片出露,断裂发育,这对本区地下水的赋存和运移影响较大。大气降水是本区地下水的主要补给来源,地下水径流和排泄条件良好,大理岩类为主要含水层,在地质、水文地质条件综合因素的作用下,构成了典型的变质岩区基岩裂隙水。  相似文献   

10.
浅层地下水是陆地水资源的重要组成部分,与人类生产生活密切相关。基于生态地球化学调查项目,按照1点/16km2的密度对滕州市浅层地下水进行调查,共采集地下水样品95件,分析Fe、Mn等35项指标。结果表明,研究区浅层地下水质量总体较好,pH、CN-、Cr6+、溶解性总固体等21项指标含量基本符合《地下水质量标准》(GB/T 14848-2017)中Ⅲ类地下水规定的阀值,适用于集中式生活饮用水水源及工农业用水。影响研究区浅层地下水质量的主要因子是Fe和总硬度,由原生地质环境及人类活动引起。研究结果可为研究区经济社会发展和用水安全提供基础性资料和决策依据。  相似文献   

11.
山东省泰安地区地下水类型主要为松散类孔隙水、变质岩火成岩裂隙水及碳酸岩裂隙岩溶水三大类。通过分析不同水文构造单元地质特征,采取不同的物探方法,测量岩石的电阻率差异分析推断其富水性,研究确定富水层位并通过钻探工程验证实现地质找水。在2010—2011年山东泰安地区抗旱打井工程中,利用高密度电阻率法在解决地质找水方面取得了重要成果。  相似文献   

12.
In order to reveal the sedimentary environment of carbonate rocks in Nanfen Formation of Qingbaikou System in Tonghua, Jilin Province, the mineral composition and petrochemistry of carbonate rocks in Nanfen Formation were analyzed. The mineral compositions of five carbonate rock samples in Nanfen Formation mainly consist of calcite, with minor clay minerals and quartz, and the rock type is siliceous marlite. The Mn/Sr va-lues range from 1.52 to 4.08, with an average of 2.64, indicating that the carbonate rocks experienced weak diagenesis; the Sr/Ba values range from 1.26 to 2.51, with an average of 1.93, indicating marine environment; the ratio of Mg/Al ranges from 35.33 to 86.34, with an average of 62.95, indicating the seawater environment, which is consistent with the result from Sr/Ba; the MgO/CaO values range from 0.01 to 0.04, with an average of 0.02, indicating humid environment; the values of V/(V+Ni) range from 0.63 to 0.73, with an average of 0.70, indicating anoxic environment. In summary, geochemical analyses show that the Nanfen Formation carbonate rocks are marine deposits, in a warm, humid, anoxic environment with poor flow of seawater, and subsequently underwent weak diagenetic alteration.  相似文献   

13.
淄博市淄川区饮用天然矿泉水按照含水层性质可划分为松散岩类孔隙水、碳酸盐岩类裂隙岩溶水和岩浆岩类构造裂隙水3大类。区内29眼井泉监测点饮用天然矿泉水检测结果显示,研究区存在锶型、锂型和锶锂复合型3种类型矿泉水。从水岩作用角度分析了矿泉水中锶和锂的来源,认为研究区广泛分布寒武纪碳酸盐岩,石灰岩尤其是鲕状灰岩中丰富的锶元素,是锶矿泉水形成主要的物源条件之一;地下水沿灰岩裂隙岩溶运动为矿泉水的形成创造了重要的水动力条件;研究区腐殖质经低矿化近中性的大气降水淋滤后,形成富含腐殖酸的偏酸性溶液入渗地下,对地下岩层产生溶解、溶滤作用,随着溶解过程的进行,岩石中的锶元素大量进入地下水中。  相似文献   

14.
岩溶关键带水文地球化学过程的研究对于科学认识其内部的演化环境与结构特征具有重要意义。岩溶水是水-岩作用后主要的信息载体, 定量分析其水化学特征及成因是揭示岩溶关键带含水系统介质环境与水动力条件的有效手段。以滇中高原岩溶关键带3个典型岩溶含水系统为研究对象, 通过对不同含水系统出露的岩溶泉进行野外采样与室内测试, 综合采用数理统计分析、水化学图解、离子比例系数与水文地球化学模拟等方法, 深入剖析了各含水系统岩溶水水化学组分特征、成因作用和含水层介质特性, 并对关键带中水循环与水化学的内在联系及规律进行了探讨。结果表明: ①HCO3-、Ca2+是各含水系统岩溶水中含量最高且来源稳定的离子组分, Mg2+是控制各含水系统水化学类型异化的关键因素; ②碳酸盐岩类的岩石风化、矿物溶解是各含水系统内岩溶水化学组分特征的主要成因作用, 岩溶水对华宁水系统含水层的溶蚀作用仍在发生, 阳离子吸附交替与硅酸盐岩类的风化溶解是区域岩溶水中Na+、K+的重要来源; ③区域岩溶的发育强度、岩溶含水层的出露条件及含水介质岩性与连通性共同塑造了滇中高原岩溶关键带不同含水系统地下水化学特性。研究成果丰富了对滇中高原岩溶关键带水文地球化学过程的认识, 为区域岩溶水资源的开发、利用与保护提供基于水化学的证据支撑。   相似文献   

15.
洞庭湖平原西部地区浅层承压含水层是当地主要的地下水开采层,却面临严重的水质型缺水问题,其中以铵氮异常最为典型,但目前对于其来源和富集机制的认识十分薄弱。以洞庭湖平原西部为研究区,沿区域地下水流方向对地下水样品进行水文地球化学分析,旨在查明地下水中铵氮的来源,揭示地下水流动对铵氮富集的控制机理。结果表明:NH4-N质量浓度为0.05~16.75 mg/L,且与DOC、HCO3-、As、Fe2+、Mn、P质量浓度呈现较好正相关性;而高质量浓度的NH4-N对应着很低质量浓度的Cl-、SO42-、NO3-和很低的Cl/Br比值,可以推测浅层承压水中的铵氮主要由天然有机质矿化作用产生,而非人为输入。沿着地下水流向,NH4-N和As、Fe2+、Mn质量浓度均显著升高,说明由于水流越来越滞缓,含水介质颗粒越来越细,沉积物有机质越来越富集,含氮有机质矿化作用逐渐增强,使得NH4-N质量浓度逐渐升高,并形成了还原性逐渐增强的地下水环境,相关地球化学过程产生的还原性组分(砷、铁、锰等)也逐渐富集。本研究进一步丰富了地下水原生铵氮的成因理论,可为当地的供水安全保障提供理论基础。   相似文献   

16.
在山东省北部(鲁北)地区,当地群众由于长期饮用高氟深层地下水,极易导致地氟病,严重影响当地群众的身体健康。根据取样分析,研究区深层地下水氟离子含量大致呈现由南向北、由东向西依次增大的趋势,并且同一地段不同深度、不同岩性的氟离子含量也不尽相同,粘土中氟离子含量普遍大于粉砂层中的含量,高氟地下水多为弱碱性水,高氟地下水Na/Ca比高,高氟水与Na/Ca呈对数相关,相关性较好;高氟水水化学类型一般为HCO_3·Cl-Na型。从地质环境、水文地质环境、水文地球化学角度初探了鲁北平原深层高氟地下水的水文地球化学成因,认为鲁北深层高氟水的形成及分布规律主要受沉积环境、径流条件以及开采量的影响。由于沉积物来源的不同、水化学特征的迥异以及深层地下水的大量开采,粘土层压密释水过多补给,同时由于粘土层由南向北厚度逐渐增大,地下水径流进一步变缓,造成氟离子含量逐步增高,形成了南北部相差较大的氟离子分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号