首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
植物生长季的变化反映了全球气候变化对生态环境的影响。本研究以2000-2006年间MODIS-NDVI影像数据集,使用TIMESAT软件从归一化植被指数(NDVI)时间序列中,分别提取福建省不同森林植被的生长季开始日期(Start of Season,SOS)、生长季结束日期(End of Season,EOS)和生长季长度(Length of season,LOS)等物候参数,并与全省尺度的气温与降水量进行相关分析。结果表明:不同森林类型NDVI与当月月均气温之间具有较显著的相关性(R2为0.72-0.79,p<0.01),同期温度变化对植被生长的影响相对于降水量更重要;而植被生长对降水量的响应存在大约2个月的时滞效应(R2为0.54-0.75,p<0.01),说明前期的降水累积对于后续植被生长有较显著影响。福建省森林植被生长季持续时间约213~223 d,开始于每年4月初到4月中旬(第98~103 d),结束于11月中旬前后(第316~321 d)。其中,南亚热带森林生长季长于中亚热带森林,相同气候条件下的阔叶林生长季时间略长于针叶林。另外,春季(2-4月)气温变化是导致福建省内2个气候带森林生长季开始时间、生长季结束时间及生长季长度变化的关键因素,而伴随春季温度升高,植被生长季开始时间提前(R2为0.83,p<0.01),同时生长季长度延长(R2为0.80,p<0.01)。7 a间,生长季持续时间呈现微弱延长趋势,总体延长幅度为2.4~3.1 d。  相似文献   

2.
The accurate assessment of forest damage is important basis for the forest post-disaster recovery process and ecosystem management. This study evaluates the spatial distribution of damaged forest and its damaged severity caused by ice-snow disaster that occurred in southern China during January 10 to February 2 in 2008. The moderate-resolution imaging spectroradiometer(MODIS)13 Q1 products are used, which include two vegetation indices data of NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index). Furtherly, after Quality Screening(QS) and Savizky-Golay(S-G) filtering of MODIS 13 Q1 data, four evaluation indices are obtained, which are NDVI with QS(QSNDVI), EVI with QS(QSEVI), NDVI with S-G filtering(SGNDVI) and EVI with S-G filtering(SGEVI). The study provides a new way of firstly determining the threshold for each image pixel for damaged forest evaluation, by computing the pre-disaster reference value and change threshold with vegetation index from remote sensing data. Results show obvious improvement with the new way for forest damage evaluation, evaluation result of forest damage is much close to the field survey data with standard error of only 0.95 and 1/3 less than the result that evaluated from other threshold method. Comparatively, the QSNDVI shows better performance than other three indices on evaluating forest damages. The evaluated result with QSNDVI shows that the severe, moderate, mild damaged rates of Southern China forests are 47.33%, 34.15%, 18.52%, respectively. By analyzing the influence of topographic and meteorological factors on forest-vegetation damage, we found that the precipitation on freezing days has greater impact on forest-vegetation damage, which is regarded as the most important factor. This study could be a scientific and reliable reference for evaluating the forest damages from ice-snow frozen disasters.  相似文献   

3.
多源土地利用/覆盖分类产品是陆地表层过程研究不可或缺的重要基础数据,而其一致性分析则是产品应用的前提和基础。本文基于类型面积偏差、类型面积相关、误差矩阵和类型空间混淆等方法,从面积一致性和空间一致性两方面分析了 5种土地利用/覆盖分类产品(MCD12Q1-2010、GlobCover2009、CCI-LC2010、FROM-GLC2010和GlobeLand30-2010)在全球海岸带区域的一致性。结果表明:① 各产品土地利用/覆盖类型的空间分布总体上表现出较强的一致性,但在细节上存在大面积不一致现象;② 各产品对全球海岸带土地利用/覆盖构成的描述基本一致,即以水体为主,林地和未利用地次之,耕地、草地和灌木地较少,湿地和人造地表相对最少,但在细节上存在面积偏差;③ 在产品组合中,MCD12Q1-2010/GlobCover2009的相关系数、总体精度和Kappa系数均最低,分别为0.8814、67.46%和0.5748,而GlobCover2009/CCI-LC2010的相关系数、总体精度和Kappa系数均最高,分别为0.9869、81.50%和0.7505;④ 5种产品两两对比,草地、灌木地和湿地的混淆程度最高,耕地和人造地表次之,林地和未利用地较低,水体最低;⑤ 全球海岸带有28.81%的土地具有较低的一致性,这些区域地类混淆现象较为严重,尤其是耕地、林地、草地、灌木地、湿地和未利用地之间的相互混淆对5种产品的一致性程度有直接影响。本文有望为海岸带研究在已有土地利用/覆盖数据源选择和使用等方面提供参考和建议。  相似文献   

4.
Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and climate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the ‘core’ pixels were extracted to represent the most possible burned pixels based on the comparison of the temporal change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre- and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the ‘core’ pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre- and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the highest accuracy of 96.61%.  相似文献   

5.
加拿大北方森林火烧迹地遥感分析   总被引:1,自引:0,他引:1  
森林火灾是加拿大北方森林地区最主要的扰动因素,对北方生态系统起着主导作用。基于MODIS数据,采用全球扰动指数算法(MGDI),对加拿大萨斯喀彻温省和亚伯达省2004-2011年的森林火烧迹地进行检测和分析。通过与MODIS标准火烧迹地产品以及加拿大林业局数据进行比较,扰动指数算法检测的火烧迹地面积比MODIS标准产品更接近于林业局的统计数据。分析表明,在2004-2011年间,由于火灾原因,整个研究区森林面积平均每年减少76.36万hm2,占该区域森林总面积的3.36%。萨斯喀彻温省平均每年燃烧的森林面积为46.83万hm2,亚伯达省为29.53万hm2。其中,2006、2008、2010和2011年是火灾的高峰年份。火烧迹地主要集中在生态交错带的北方保护区、针叶林保护区、针叶林平原区,以及北方平原东北部的伍德布法罗国家森林保护区。  相似文献   

6.
土地覆被是地球科学研究中的重要参量,评价土地覆被数据的制图精度是保障数据合理使用的前提。本文提出了一种基于伪纯像元的精度评价策略(伪纯像元策略),即当低空间分辨率栅格窗口内对应的高空间分辨率数据中优势类别(面积最大的地类)的占比高于伪纯像元纯度阈值(代表像元纯度,取值范围:35%~100%,步长为5%)时,以此栅格窗口为基准生成土地覆被类型为优势类别的伪纯像元用于精度评价。以澜沧江-湄公河(澜湄)流域为试验区,选择GlobeLand30为参考数据,并基于混淆矩阵精度评价方法对比分析了伪纯像元策略与重采样法(最近邻法和众数法)在CCI-LC(300 m)和MCD12Q1(500 m) 2套全球土地覆被数据精度评价中的差异。结果表明:① 伪纯像元策略在35%~100%纯度阈值下对CCI-LC和MCD12Q1在澜湄流域评价的精度分别为72.76%~55.26%和71.44%~45.41%,比重采样法评价的单一精度(众数法:71.21%和70.54%、最近邻法:71.48和69.87%)能更好地反映像元纯度对土地覆被数据精度的影响;② CCI-LC的总体精度高于MCD12Q1,且2套数据的精度差随纯度阈值的增大而增加,CCI-LC和MCD12Q1在35%、100%纯度阈值下的精度差分别为1.32%和9.85%;③ 2套数据中耕地、有林地、草地和水体的分类精度均相对较高,而灌木林地(精度接近0)和裸地的分类精度均较低;④ 2套数据与GlobeLand30的空间不一致区域多出现在土地覆被类型高度异质化的混合像元区域,且随纯度阈值的增大,评价样本栅格更趋均质,混合像元对评价精度的影响也会递减。伪纯像元精度评价策略适用于跨空间分辨率土地覆被数据的精度对比,为评价全球土地覆被产品在区域尺度的适用性及适用范围提供了新的检验策略。  相似文献   

7.
准确认识三江源植被生产力月度尺度的时空格局变化,对三江源畜牧业生产以及生态保护政策制定具有重要意义,可稳定获取的重访周期为4 d的16 m分辨率GF-1/WFV数据使中等空间分辨率的月度NPP产品生产成为可能。本文建立了一套以GF-1/WFV为基本数据源的中等空间分辨率草地月度NPP估算技术方法,并评估了其在三江源地区应用的可行性。在黄河源区玛多县的实验表明以GF-1/WFV为基础,以MODIS13Q1数据为补充,可以获得覆盖全区的中等空间分辨率月度NDVI数据,据其反演得到的草地NPP,地面验证精度在70%以上,优于MODIS NPP产品精度,且能更为详细地反映草地生产力变化的空间差异,在青海三江源地区利用GF-1/WFV数据生产中等空间分辨率的草地月度NPP产品是可行的。  相似文献   

8.
Forest net primary productivity (NPP) is a key parameter for forest monitoring and management. In this study, monthly and annual forest NPP in the northeastern China from 1982 to 2010 were simulated by using Carnegie-Ames-Stanford Approach (CASA) model with normalized difference vegetation index (NDVI) sequences derived from Advanced Very High Resolution Radiometer (AVHRR) Global Invento y Modeling and Mapping Studies (GIMMS) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products. To address the problem of data inconsistency between AVHRR and MODIS data, a per-pixel unary linear regres- sion model based on least ~;quares method was developed to derive the monthly NDVI sequences. Results suggest that estimated forest NPP has mean relative error of 18.97% compared to observed NPP from forest inventory. Forest NPP in the northeastern China in- creased significantly during the twenty-nine years. The results of seasonal dynamic show that more clear increasing trend of forest NPP occurred in spring and awmnn. This study also examined the relationship between forest NPP and its driving forces including the climatic and anthropogenic factors. In spring and winter, temperature played the most pivotal role in forest NPR In autumn, precipitation acted as the most importanl factor affecting forest NPP, while solar radiation played the most important role in the summer. Evaportran- spiration had a close correlation with NPP for coniferous forest, mixed coniferous broadleaved forest, and broadleaved deciduous forest. Spatially, forest NPP in the Da Hinggan Mountains was more sensitive to climatic changes than in the other ecological functional re- gions. In addition to climalie change, the degradation and improvement of forests had important effects on forest NPP. Results in this study are helpful for understanding the regional carbon sequestration and can enrich the cases for the monitoring of vegetation during long time series.  相似文献   

9.
In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapotranspiration(ET) over the Sanjiang Plain,Northeast China.Land cover/land use was classified by using a recursive partitioning and regression tree with MODIS Normalized Difference Vegetation Index(NDVI) time series data,which were reconstructed based on the Savitzky-Golay filtering approach.The MODIS product Quality Assessment Science Data Sets(QA-SDS) was analyzed and all scenes with valid data covering more than 75% of the Sanjiang Plain were selected for the SEBAL modeling.This provided 12 overpasses during 184-day growing season from May 1st to October 31st,2006.Daily ET estimated by the SEBAL model was misestimaed at the range of-11.29% to 27.57% compared with that measured by Eddy Covariance system(10.52% on average).The validation results show that seasonal ET from the SEBAL model is comparable to that from ground observation within 8.86% of deviation.Our results reveal that the time series daily ET of different land cover/use increases from vegetation on-going until June or July and then decreases as vegetation senesced.Seasonal ET is lower in dry farmland(average(Ave):491 mm) and paddy field(Ave:522 mm) and increases in wetlands to more than 586 mm.As expected,higher seasonal ET values are observed for the Xingkai Lake in the southeastern part of the Sanjiang Plain(Ave:823 mm),broadleaf forest(Ave:666 mm) and mixed wood(Ave:622 mm) in the southern/western Sanjiang Plain.The ET estimation with SEBAL using MODIS products can provide decision support for operational water management issues.  相似文献   

10.
Vegetation indices(VIs) from satellite remote sensing have been extensively applied to analyze the trends of vegetation phenology. In this paper, the NDVI(normalized difference vegetation index) and SR(simple ration), which are calculated from the same spectral bands of MODIS data with different mathematical expressions, were used to extract the start date(SOS) and end date(EOS) of the growing season in northern China and Mongolia from 2000 to 2015. The results show that different vegetation indices would lead to differences in vegetation phenology especially in their trends. The mean SOS from NDVI is 15.5 d earlier than that from SR, and the mean EOS from NDVI is 13.4 d later than that from SR. It should be noted that 16.3% of SOS and 17.2% of EOS derived from NDVI and SR exhibit opposite trends. The phenology dates and trends from NDVI are also inconsistent with those of SR among various vegetation types. These differences based on different mathematical expressions in NDVI and SR result from different resistances to noise and sensitivities to spectral signal at different stage of growing season. NDVI is prone to be effected more by low noise and is less sensitive to dense vegetation. While SR is affected more by high noise and is less sensitive to sparse vegetation. Therefore, vegetation indices are one of the uncertainty sources of remote sensing-based phenology, and appropriate indices should be used to detect vegetation phenology for different growth stages and estimate phenology trends.  相似文献   

11.
MODIS植被指数时间序列产品能够连续反映植被的覆盖情况,是农作物遥感测量的重要数据源.本文选取江苏省为研究区,利用2008年23个时相的MODIS NDVI数据,采用S-G滤波法进行时间序列的重构,提高NDVI时间序列信息的真实性.另结合农作物物候历、种植结构、地面调查样本等辅助资料,将水稻植被指数时间序列曲线参量化...  相似文献   

12.
本文以福建省漳浦县沿海区域为研究对象,利用2005年的CBERS-02数据和2000年的ETM+数据,进行沿海防护林快速提取研究。通过分析沿海防护林和沿海地区其他典型地物在原始波段、归一化植被指数ND-VI和非线性波段比NLBR的光谱特征,提出了适用于不同传感器的沿海防护林快速提取方法。研究发现,综合利用NDVI大于阈值1和NLBR小于阈值2,可以实现沿海防护林的快速提取,而阈值可以根据NDVI和NLBR的散点图确定。该方法对具有绿、红和近红外3个波段的不同传感器数据均有一定的参考价值。研究区2000年2005年间,沿海防护林减少的面积是增加面积的1.46倍,政府相关部门应该加大对防护林的管理和建设力度,增强沿海地区防御自然灾害的能力。  相似文献   

13.
基于2000-2013年三江源MODIS NDVI数据,本文系统地分析了三江源植被生长季累计NDVI的时空变化特征,并结合三江源生态保护与建设工程实施的相关统计数据,探讨了人类活动对三江源植被变化的影响,最后通过气候因子与生长季累计NDVI的相关性分析,揭示了影响三江源不同地区植被变化的主要气候限制因素。结果表明,2000-2013年三江源植被NDVI整体上呈增加趋势,NDVI明显增加的区域面积比例达17.84%,主要分布于研究区的西部和北部;明显减少的区域仅占0.78%,多零星分布于研究区中部;NDVI变化稳定或没有显著变化趋势的区域面积比例为59.64%,主要位于研究区东部和南部。三江源生态保护与建设工程的实施虽然促进了植被恢复,但对区域植被整体变化的影响有限,研究时段内区域植被整体好转主要受气候因素控制。西部长江源区的植被生长主要受气温影响,东北部黄河源区主要受降水制约,南部澜沧江源区降水和气温的限制性均不明显。  相似文献   

14.
This study examined the temporal variation of the Normalized Difference Vegetation Index (NDVI) and its relationship with climatic factors in the Changbai Mountain Natural Reserve (CMNR) during 2000-2009.The results showed as follows.The average NDVI values increased at a rate of 0.0024 year-1.The increase rate differed with vegetation types,such as 0.0034 year-1 for forest and 0.0017 year-1 for tundra.Trend analyses revealed a consistent NDVI increase at the start and end of the growing season but little variation or decrease observed in July during the study period.The NDVI in CMNR showed a stronger correlation with temperature than with precipitation,especially in spring and autumn.A stronger correlation was observed between NDVI and temperature in the tundra zone (2,000-2,600m) than in the coniferous forest (1,100-1,700m) and Korean pine-broadleaved mixed forest (700-1,100m) zones.The results indicate that vegetation at higher elevations is more sensitive to temperature change.NDVI variation had a strong correlation with temperature change (r=0.7311,p<0.01) but less significant correlation with precipitation change.The result indicates that temperature can serve as a main indicator of vegetation sensitivity in the CMNR.  相似文献   

15.
中国北方草原区生产力在区域碳水循环、农牧业发展中举足轻重。归一化植被指数(Normalized Difference Vegetation Index,NDVI)广泛应用于生产力的计算,然而目前来源众多的NDVI数据反映中国北方草原植被时空动态的一致性仍未可知。本研究利用2000—2015年3个来源NDVI数据集(MODIS NDVI、GIMMS NDVI和SPOT NDVI)并以国际上公认的数据准确性较高的MODIS NDVI为基准对比分析了中国北方草原区NDVI时空动态的一致性,并选取适宜的NDVI产品揭示研究区NDVI长期的时空格局。结果表明:整个中国北方草原区以及部分草原类型(高寒草甸、高寒草原、高寒荒漠、温带荒漠草原)GIMMS NDVI和MODIS NDVI 2套数据集无论是数值范围,还是年际波动和变化趋势具有较高一致性(二者在高寒草甸、高寒草原、高寒荒漠、温带荒漠草原的相关系数分别为0.60、0.47、0.51、0.74),而SPOT NDVI数值远高于其他2个数据集,尤其是在青藏高原草原区,SPOT NDVI数值每年较另外两套数据集约偏高0.15,表明该区域使用SPOT数据应慎重。部分温带草原类型(典型草原和草甸草原)GIMMS NDVI和SPOT NDVI数据集在年际波动以及变化趋势上具有较高的一致性(相关系数分别为0.85和0.60),但温带草原区3种数据集NDVI数值范围整体相差不大,小于0.06。基于上述结果,本研究进一步采用时间序列最长且与MODIS NDVI一致性最好的GIMMS NDVI分析了研究区NDVI的时空动态,发现1982—2015年中国北方草原区NDVI整体呈增加趋势,25%的区域达显著水平(p<0.05),主要集中在温带草原区;高寒草原区NDVI大部分区域变化不显著且有一定比例的区域NDVI呈显著下降趋势。本研究可以为模型数据集选择和预测中国北方草原区植被对未来气候变化的响应提供科学依据。  相似文献   

16.
During the 15th Conference of the Parties(COP 15),Parties agreed that reducing emissions from deforestation and forest degradation and enhancing ’removals of greenhouse gas emission by forests’(REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change(UNFCCC) was capable of dealing with global emissions.As REDD+ seeks to lower emissions by stopping deforestation and forest degradation with an international payment tier according to baseline scenarios,opportunities for ecosystem benefits such as slowing habitat fragmentation,conservation of forest biodiversity,soil conservation may be also part of this effort.The primary objective of this study is to evaluate ecosystem-based benefits of REDD+,and to identify the relationships with carbon stock changes.To achieve this goal,high resolution satellite images are combined with Normalized Difference Vegetation Index(NDVI) to identify historical deforestation in study area of Central Kalimantan,Indonesia.The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 × 10 5 t CO 2 and 1.47 × 10 6 t CO 2 respectively,showing an increasing trend in recent years.Dring 2005-2009,number of patches(NP),patch density(PD),mean shape index distribution(SHAPE_MN) increased 30.8%,30.7% and 7.6%.Meanwhile,largest patch index(LPI),mean area(AREA_MN),area-weighted mean of shape index distribution(SHAPE_AM),neighbor distance(ENN_MN) and interspersion and juxtaposition index(IJI) decreased by 55.3%,29.7%,15.8%,53.4% and 21.5% respectively.The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 × 10 3 ha corresponding to 96.0% of the changing forest.These results support the view that there are strong synergies among carbon loss,forest fragmentation and soil erosion in tropical forests.Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.  相似文献   

17.
Global climate change has been found to substantially influence the phenology of rangeland, especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenology owing to different phenological exploration methods and lack of ground validation. Little is known about the uncertainty in the exploration accuracy of vegetation phenology. Therefore, in this study, we selected a typical alpine rangeland near Damxung national meteorological station as a case study on central Tibetan Plateau, and identified several important sources influencing phenology to better understand their effects on phenological exploration. We found man-made land use was not easily distinguished from natural rangelands, and therefore this may confound phenological response to climate change in the rangeland. Change trends of phenology explored by four methods were similar, but ratio threshold method (RTM) was more suitable for exploring vegetation phenology in terms of the beginning of growing season (BGS) and end of growing season (EGS). However, some adjustments are needed when RTM is used in extreme drought years. MODIS NDVI/EVI dataset was most suitable for exploring vegetation phenology of BGS and EGS. The discrimination capacities of vegetation phenology declined with decreasing resolution of remote sensing images from MODIS to GIMMS AVHRR datasets. Additionally, distinct trends of phenological change rates were indicated in different terrain conditions, with advance of growing season in high altitudes but delay of season in lower altitudes. Therefore, it was necessary to eliminate interference of complex terrain and man-made land use to ensure the representativeness of natural vegetation. Moreover, selecting the appropriate method to explore rangelands and fully considering the impact of topography are important to accurately analyze the effects of climate change on vegetation phenology.  相似文献   

18.
人为或自然因素造成的森林火灾常导致森林覆盖和结构的变化,对森林碳循环产生重大影响。MODIS热异常-火灾产品(MOD14)包含地表火灾位置、可信度、火点辐射能量及其他属性信息,可用于火灾频率、等级及其变化的监测。本研究以俄罗斯欧洲地区的北方森林为研究对象,采用2005-2010年每日MODIS14数据和GIS空间分析方法,对研究区过火像元进行判别提取,分析该地区林火时空变化规律,并探讨驱动因素。结果显示,俄罗斯欧洲地区森林火灾主要分布在中南部。近年来,火灾数量呈上升趋势,2010年的火灾覆盖范围是2005年的1.5倍;年内火灾发生情况随时间波动,火险期为每年的4-10月;极端干旱天气造成的的特大型火灾事件在本研究结果中得以反映。  相似文献   

19.
Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging Spectroradiometer(MODIS) Normalized Difference Vegetation Index(NDVI) data and meteorological data(temperature and precipitation) from 2001 to 2012, the trend of vegetation dynamics were examined in the Ziya-Daqing basins, China. The path analysis was used to obtain the information on the relationships among climatic factors and their effects on vegetation growth. It was found that the trends of growing season NDVI were insignificant in most plain dry land, while the upward trends were significant in forest, grass and dry land in Taihang Mountains. According to the path analysis, in 23% of the basins the inter-annual NDVI variation was dominated by the direct effect of precipitation, in 5% by the direct effects of precipitation and temperature, and in less than 1% by the direct effect of temperature or indirect effects of these two climatic factors. It indicated that precipitation significantly affected the vegetation growth in the whole basins, and this effect was not regulated by temperature. Precipitation increase(especially in July, August and September) was favorable to greenness enhancement. Summer temperature rising showed negative effect on plant productivity enhancement, but temperature rise in April was beneficial for the vegetation growth. When April temperature increases by 1℃, the onset date of greenness for natural vegetation will be 2 days in advance. There was a lag-time effect of precipitation or temperature on monthly NDVI for all land use types except grass.  相似文献   

20.
在全球气候变化背景下,植被动态变化以及植被对气候变化的响应方式已经成为生态学和地理学领域的热点。本文对比分析了南方亚热带季风区将乐县不同类型森林植被对不同时间尺度的干旱响应的差别。基于2000-2017年MODIS-EVI数据及气象站点数据,用最大值合成法、趋势分析法以及相关分析法,分析了森林植被及气象因子的动态变化特征,并对比不同森林植被对气候变化响应的差别。研究表明:① 2000-2017年,研究区植被覆盖度、EVI和降水均显著增加,区域内湿度增加,森林长势渐趋良好;② EVI在生长季初期和末期与同期的降水、温度均显著正相关(P<0.1),初期森林受降水因子的影响更大,末期受温度因子的影响大;③ 1-3月和周年的气候变化对森林的生长至关重要,长时间尺度的湿度增加对森林生长具有显著的促进作用,SPEI的时间尺度越长与EVI的相关性也越大;④ 针阔混交林与同期温度、降水的相关系数最高,并且与不同时间尺度的SPEI相关性均比较高,属于气候敏感型林型,在生产经营中要谨慎预防气候变化对该林型带来的伤害;⑤ 森林覆盖度变化与降水和SPEI_24的相关性极显著,长时间尺度的降水变化是影响森林植被覆盖率变化的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号