首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
成矿过程中金属元素的溶解性是地球化学研究的一个重要领域。探索开放、非平衡状态下地质流体中金属元素的溶解
性有助于了解矿床成因和成矿机制。成矿体系的温度、压力和成矿流体的盐度、pH 值、fH2O、fHCl及络合物配体(F- 、Cl- 、S2-
等)的浓度等均对成矿金属元素的溶解性有着重要影响。对于成矿体系状态、近年来国内外关于成矿金属元素溶解性的研究及人
工合成流体包裹体、傅里叶红外光谱、显微激光拉曼光谱、电感耦合等离子体质谱法、扩展X射线吸收精细结构和紫外-可见光谱
技术在金属元素溶解性方面的应用进行了阐述;认为热液金刚石压腔与拉曼光谱仪联合进行的高温谱学技术可以为实现成矿模
拟实验和进行谱学原位测量进而解决成矿流体中金属元素的溶解性问题提供一条新思路,具有广阔的前景。   相似文献   

2.
近年来,有关岩浆热液矿床源区硫化物熔体的熔离过程及其对成矿的贡献已引起相当的重视。在系统地介绍热液矿床
岩浆源区原生硫化物熔体分离机制,以及其对成矿金属元素的初始富集行为基础上,重点综述了岩浆硫化物熔体破坏分解并参与
到成矿流体的具体过程和实例。同时对该领域的关键技术方法LA-ICPMS原位微区成分测试的进展进行了概述,并提出了一些
研究展望,尤其是深部岩浆演化中成矿金属元素的富集迁移过程。   相似文献   

3.
低渗透储层具有孔喉细小、孔隙结构复杂、比表面积大,黏土矿物类型丰富等特点,这些特点致使流体在低渗透储层中
流动会产生强烈的微流动效应。微流动效应主要包括稀薄效应和不连续效应、表面优势效应、低雷诺数多流态效应、多尺度多相
态效应等,这些特殊效应将影响描述流体流动的微分方程及边界状态。孔隙结构特征、黏土矿物产状、润湿性、岩石矿物荷电性等
是低渗透储层微流动的影响因素,通过控制这些因素,可以改变流体在低渗透储层中的流动特征,从而控制油、气、水产量。目前
已经形成了界面修饰技术、电化学驱油等采油新技术。以微流动机理为基础,结合孔隙结构特征,找出影响低渗透储层流体流动
的主控因素,采用具有针对性的开采技术将成为高效开发低渗透油气资源的有效途径。   相似文献   

4.
岩浆结晶过程中,矿物-熔体相分离时,Pb优先进入熔体相,表现出不相容性;流体-熔体相分离时,Pb优先进入流体相;卤水-气相分离时,Pb优先进入卤水相; Pb在成矿过程中主要进入液相中进行迁移。氧化、偏酸性、富氯热液体系中,Pb主要以PbCl2-nn(0≤n≤4)形式迁移,尤其在高于350℃的高温环境下,Pb的氯络合物起支配作用;中低温、贫氯、高还原硫的碱性热液中,Pb主要以硫氢络合物形式迁移;氧化、贫氯的强碱性(pH>7.5)热液中,Pb主要以羟基络合物形式迁移;贫Cl-且富CO32-和HCO-3配体的中、低温弱碱性热液体系中,PbCO03、Pb(CO3)2-2络合物也很重要。NH3、F-、Br-、S2-x、NaPbCl03、NaPbCl4-以及S2O2-3等潜在无机配体对Pb迁移成矿意义不大。某些有机配体,如羧酸、氨基酸、腐殖酸,在低温(<200℃)条件下对Pb的运移成矿有重要作用,尤其羧酸比较重要。在成矿过程中,岩浆-热液成因的Pb Zn矿床通常经历了早期岩浆房去气、期后热液和晚期热液3个阶段。非岩浆热液成因的层控Pb Zn矿床流体主要为盆地卤水,矿化机制主要为构造挤压与重力的联合驱动,或者伸展背景下的海底热液对流。影响Pb沉淀富集的微观因素主要包括热液组成、温度、压力、pH值以及Eh值等。热液演化过程中,沸腾减压、围岩蚀变以及流体混合等地质作用促使上述微观物理化学因素发生显著变化,形成地球化学障,从而使得矿石矿物大量沉淀。   相似文献   

5.
根据软硬酸碱理论的最大硬度原理和最小亲电性原理,基于复杂化合物体系的硬度和亲电性计算方法,对国内外多个典型岩浆热液矿床的成矿岩体以及成矿热液的硬度和亲电性进行估算,进而探讨岩浆热液矿床成矿专属性。结果表明:热液具有比岩浆更高的硬度和亲电性,可以从熔体中萃取金属元素,从而形成岩浆热液矿床;与碰撞造山作用相关的长英质岩浆流体富含F,而F具有高硬度和亲电性,导致具有硬酸性质的W、Sn从熔体进入流体成矿;由于软碱S具有低硬度和亲电性,弧岩浆作用形成的富S基性岩浆有利于吸引低硬度的成矿元素,形成斑岩型铜(金)矿床;与板内伸展环境下岩浆底侵作用相关的碱性岩浆释放富Cl或CO2的流体,Cl的硬度较低而电负性高,热液主要吸引Fe、REE、Au等,从而形成IOCG型矿床。  相似文献   

6.
207铀矿床位于甘肃省龙首山成矿带西部,区内地质构造复杂,岩浆活动强烈。矿区出露地层主要为古元古界龙首山群
(Pt1)和下石炭统南洼顶组(C1n);出露岩体主要为中条期伟晶状白岗岩,其副矿物特征具有华南改造型产铀花岗岩的特点。区域
构造线呈北西-南东向。207铀矿床具有“岩体型”矿化特征,含矿主岩伟晶状白岗岩发生全岩矿化,矿体多呈脉状、透镜状及不规
则状;矿石类型为蚀变花岗岩型。岩体、地层和构造是铀矿化的3个重要控制因素。岩体侵位于高铀含量的龙首山群,构造上处
于古老隆起区。岩体的铀含量和铀的浸出率高,Th/U值小于3,造岩矿物黑云母的多色晕异常显著,沿断裂带发育较强的黑云母
绿泥石化及赤铁矿化(红化)。岩体较低的稀土元素总量预示其有较强的成矿能力,ΣCe/ΣY比值低对铀成矿有利。岩石的化学
评价系数x=27,岩石化学组分十分有利于铀的成矿。根据矿床成矿地质背景、铀矿化特征、控矿因素及大量资料的综合分析和研
究认为,207矿床外围铀成矿潜力巨大、找矿前景广阔,在新一轮找矿工作中应引起高度重视。   相似文献   

7.
对甘肃小柳沟钨钼矿床进行了辉钼矿Re-Os和白云母Ar-Ar同位素定年。2件辉钼矿样品获得的Re-Os模式年龄分
别为(427±6)Ma和(428±6)Ma,平均(427.5±6)Ma;3件白云母Ar-Ar定年获得的Ar-Ar坪年龄分别为:(391.98±1.95)、
(391.13±1.88)、(392.04±1.98)Ma,平均(391.7±1.9)Ma。上述年龄指示小柳沟钨钼矿化发生在428~392Ma之间。碰撞造
山过程中地壳收缩增厚、深部岩石增温加压和变质脱水,特别是在构造体制由挤压向伸展转换阶段的构造减压,将进一步促使部
分熔融过程及花岗岩浆的形成。含矿岩体从岩浆源区通过部分熔融作用获取成矿物质,在岩浆后续分异演化过程中,作为不相容
元素的W、Mo将倾向于在残余的熔体中进一步富集。随着岩浆上侵到浅部,因温度、压力的下降而使含水流体或挥发分饱和而发
生出溶,成矿元素将优先进入溶液,并随溶液迁移到赋矿的断裂或裂隙中沉淀成矿。因此,碰撞造山过程为祁连造山带同期含矿
岩体的形成和钨钼成矿提供了有利的动力学环境,而花岗岩浆上侵、结晶分异和流体析出,为W、Mo元素的最终迁移、富集成矿提
供了热动力学条件。因为造山后伸展阶段更利于花岗岩浆上侵和流体的分异,所以此阶段形成的花岗岩与成矿关系更为密切。
因此,祁连地区钨钼的进一步找矿工作,应对造山阶段尤其是造山作用后伸展阶段花岗岩给予高度重视。   相似文献   

8.
俯冲带的碳循环不仅在维持地球表层和地球深部之间的碳平衡方面起着关键的作用,而且还和许多重要的地球深部动
力学过程密切相关。热动力学数值模拟和高温高压实验的研究结果表明,俯冲大洋板片中的大多数碳酸盐能够在弧前和弧下深
度幸存下来,从而进入更深的地幔中。在地幔过渡带,因为板片滞留所带来的热松弛效应将使幸存下来的碳酸盐以熔体的形式释
放出去,其独特的物理化学性质使这些熔体构成了一种有效的交代组分。考虑到地幔过渡带的氧逸度特别低,那些进入未经交代
地幔中的碳酸盐熔体将变得不稳定而被还原成其他形式。不过在随后地幔对流上升的过程中,这些被还原的表壳碳又会因为氧
逸度在某些临界深度发生突变而氧化熔融,这也许可以解释地幔不同深度所存在的某些高导低速体和地震波各向异性等现象。
作为洋壳俯冲的后续过程,陆壳的深俯冲作用也可以将表壳碳带至地幔深处,例如超高压大理岩和碳酸盐化榴辉岩的广泛产出就
是最好的证明。超高压变质岩中金刚石的产出表明其构成了表壳碳在地幔深处的一种重要赋存形式,研究显示其形成过程和富
碳熔体、流体的活动密切相关。虽然前人针对俯冲带的碳循环已经取得了若干研究进展,然而仍有大量的科学问题亟待解决。最
后就一些关键性的问题进行了列举说明,并对未来的研究方向进行了展望。   相似文献   

9.
为查明控制大同盆地高氟地下水形成的主要地球化学过程,对大同盆地地下水高氟区31个水样进行了水化学特征及
因子分析研究。结果表明,研究区浅层和深层地下水中均检测出氟,且氟含量高,最大ρ(F)达10.37mg/L。该区高氟地下水以
Na-HCO3 型水为主,具有典型的富Na特征。PHREEQC饱和指数计算结果表明,地下水中萤石为不饱和状态,地下水中ρ(F)主
要受到萤石溶解影响。因子分析研究表明,水-岩相互作用、碳酸盐矿物溶解沉淀及Na-Ca离子交换作用是控制大同盆地地下
水氟富集的主要水化学过程。   相似文献   

10.
上地幔可以存储大量的水,水能够极大地增强地幔矿物的电导率。在实验室高温高压条件下获得了含水和不含水矿物
电导率不同的结论,有必要广泛开展含水矿物电导率实验研究。基于最新实验结果,充分考虑上地幔热力学条件,矿物体积随深
度变化和矿物间水分配情况,对2个研究小组上地幔4种主要矿物实验室电导率结果采用平均方法建立随水含量变化的上地幔
电导率-深度曲线,并与实测地球物理模型进行了对比。研究表明,水能够极大地影响上地幔的电性结构,推测上地幔平均水质
量分数为0.01%,位于地球化学方法推断的上地幔水质量分数范围(50×10-6~200×10-6)。海洋上地幔软流圈高电导率异常
很可能是碳酸盐熔体、硅酸盐熔体及水共同作用的结果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号