首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Mine waste debris flows continue to occur in China, and the disaster prevention and mitigation of these flows faces severe challenges since the mechanisms determining erosion and transport of mine waste along gullies are not yet fully understood. The erosion and delivery process of mine waste heaps was reproduced through flume experiments with the method based on field survey data of the Daxicha mine waste debris flow gully in the Xiaoqinling gold mining area. The results showed that the erosion and movement of mine wastes could be divided into three modes: minimal sediment movement, sediment sorting and delivery, and a large amount of sediment transfer. Moreover, there was an obvious amplification effect on peak discharge along with the formation and failure of temporary landslide dams during the erosion process. The correlation between the coefficient of peak discharge amplification and three dimensionless influencing factors, flume gradient, dimensionless volume, and dimensionless particle size, were comprehensively analyzed. An empirical formula for the coefficient of peak discharge amplification was proposed and verified based on 16 sets of experimental data. These preliminary results can provide a scientific reference for future research on disaster prevention and mitigation of mine waste debris flows.  相似文献   

2.
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.  相似文献   

3.
Debris flows consist of grains of various sizes ranging from 10~(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution. The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a material-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.  相似文献   

4.
A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a constant elevation and accelerated along a higher chute to impact substrate materials with different water contents and particle size distributions in the lower chute. Two high-speed cameras, pore and earth pressure detecting devices, were placed in the substrate materials where severe scouring occurs in order to collect multiple measurements of dynamical and mechanical parameters. The entrainment dynamics were verified by geometrical analysis and quasi-static simulation. The results show that wet and fine materials that are placed in the lower chute with steeper slopes are easily entrained during debris flow initiation, the pattern of which can be described by Coulomb friction and the Mohr-Coulomb law. Elaborate measurements of dynamical parameters enable the results of an elementary computational framework to predict the time-dependent scouring depth ht, which provides insight into rapidly determining debris flow propagation. Finally, the post-entrainment dynamics were studied. The results indicate that the propagation and the amplification of debris flows along erodible beds are dominated by the velocity and the solid volume fraction of the mixed substrate, and the coarse particle group of the substrate is a key feature affected by momentum changes.  相似文献   

5.
The herringbone water-sediment separation structure(HWSSS) was developed to prevent debris flows. This paper mainly focuses on evaluating the sediment separation efficiency of HWSSS in debris flow prevention and determining the grid opening width D, a crucial structure parameter for HWSSS design. Theoretical analysis on the total sediment separation rate Pt reveals that the efficiency of sediment separation is much related with sediment grain size distribution(GSD) and grid opening width. The lower limit of Pt is deduced from the perspective of safety consideration by transforming debris flow into sediment-laden flow. Hydraulic model tests were carried out. Based on the regression analysis of the experimental data, the quantitative relationships between Pt and D and GSD characteristic values were finally established. A procedure for determining optimal grid opening width is proposed based on these analyses. These results are of significance in evaluating sediment separation effect by HWSSS in debris flow prevention and contribute to a more explicit methodology for design of HWSSS.  相似文献   

6.
The initiation mechanism of debris flow is regarded as the key step in understanding the debris-flow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particle accumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.  相似文献   

7.
Siltation gradient and siltation length are important parameters for designing gravity check dams for debris flows, which directly affect the accuracy of estimates of interception capacity. At present, siltation gradient calculations are based primarily on empirical values, and range from 0.4 to 0.95 times the channel slope coefficient. The middle reaches of the Bailong River are one of the four areas in China that are most severely affected by debris flow hazards. Gravity dams are widely employed in this mountainous area. However, field studies of their capacity are lacking. In this paper, the operations of check dams were investigated. Based on field investigation results and theoretical analysis, calculations for siltation gradient, siltation length, and dam storage capacity are established. The impact of debris flow density, channel slope, and particle size weight percentages are discussed. The calculations show that the theoretical values for siltation gradient are consistent with measured values with 83.6% accuracy; and theoretical values of siltation length are consistent with measured values with 91.6% accuracy. The results of this research are an important reference for optimal height and spacing of dams, estimation of dam storage capacity, and disaster prevention.  相似文献   

8.
Flexible net barriers are a new type of effective mitigation measure against debris flows in valleys and can affect the kinematic energy and mass of debris flows. Here, ten flume tests were performed to study the dynamic behaviours of debris flows with differences in volumes, concentrations (solid volume fraction), and travel distances after interception by a uniform flexible net barrier. A high-speed camera was used to monitor the whole test process, and their dynamic behaviours were recorded. A preliminary computational framework on energy conversion is proposed according to the deposition mechanisms and outflow of debris flow under the effects of the flexible net barrier. The experimental results show that the dynamic interaction process between a debris flow and the flexible net barrier can be divided into two stages: (a) the two-phase impact of the leading edge of the debris flow with the net and (b) collision and friction between the body of the debris flow and intercepted debris material. The approach velocity of a debris flow decreases sharply (a maximum of 63%) after the interception by the net barrier, and the mass ratio of the debris material being intercepted and the kinetic energy ratio of the debris material being absorbed by the net barrier are close due to the limited interception efficiency of the flexible net barrier, which is believed to be related to the flexibility. The energy ratio of outflow is relative small despite the large permeability of the flexible net barrier.  相似文献   

9.
Debris flows can be extremely destructive because they can increase in magnitude via progressive entrainment. In this paper, a total of 18 landslide-type debris flows and 268 channelized debris flows in Wenchuan earthquake and Taiwan region, as well as other regions were collected to analyze the entrainment rate of debris flows in each triggering condition. Results show that there is a power relationship between volume of initial triggered mass and final deposited debris for landslide type debris flow. The debris flows during 2008 and 2013 in Wenchuan earthquake-region have smaller entrainment rate than that from 2001 t0 2009 in Taiwan. The entrainment rate of debris flow events from 2001 to 2009 in Taiwan shows a decaying tendency as elapsed time. Comparison of the entrainment rate in the two earthquake-hit regions with other regions proves that entrainment rate has a close relation with major sediment availability and secondary rainstorm conditions.  相似文献   

10.
Debris flows often occur in landslide deposits during heavy rainstorms. Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions. A physical model based on an infinitely long, uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits. To determine the initiation condition for rainfall-induced debris flows, we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope. This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows. Taking the landslide deposits at Wenjiagou gully as an example, the initiation conditions for debris flow were computed. The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions. The debris-flow triggering is affected by the depth of surface-water runoff, the slope saturation and shear strength of the sediment.  相似文献   

11.
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.  相似文献   

12.
A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers.  相似文献   

13.
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K0.1); transitional flow(0.1 k/K1); and turbulent flow(k/K1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.  相似文献   

14.
Debris flow is a common natural hazard in the mountain areas of Western China due to favorable natural conditions,and also exacerbated by mountainous exploitation activities.This paper concentrated on the characteristics,causes and mitigation of a catastrophic mine debris flow hazard at Longda Watershed in Songpan County,Sichuan Province,on 21 July 2011.This debris flow deposited in the front of the No.1 dam,silted the drainage channel for flood and then rushed into tailing sediment reservoir in the main channel and made the No.2 dam breached.The outburst debris flow blocked Fu River,formed dammed lake and generated outburst flood,which delivered heavy metals into the lower reaches of Fu River,polluted the drink water source of the population of over 1 million.The debris flow was characterized with a density of 1.87~2.15 t/m 3 and a clay content of less than 1.63%.The peak velocity and flux at Longda Gully was over 10.0~10.9 m/s and 429.0~446.0 m 3 /s,respectively,and the flux was about 700 m 3 /s in main channel,equaling to the flux of the probability of 1%.About 330,000m 3 solid materials was transported by debris flow and deposited in the drainage tunnel(120,000~130,000 m 3),the front of No.1 dam(100,000 m 3) and the mouth of the watershed(100,000~110,000 m 3),respectively.When the peak flux and magnitude of debris flow was more than 462 m 3 /s and 7,423 m 3,respectively,it would block Fu River and produce a hazard chain which was composed of debris flow,dammed lake and outburst flood.Furthermore,the 21 July large-scale debris flow was triggered by rainstorm with an intensity of 21.2 mm/0.5 h and the solid materials of debris flow were provided by landslides,slope deposits,mining wastes and tailing sediments.The property losses were mainly originated from the silting of the drainage tunnel for flash flood but not for debris flow and the irrational location of tailing sediment reservoir.Therefore,the mitigation measures for mine debris flows were presented:(1) The disastrous debris flow watershed should be identified in planning period and prohibited from being taken as the site of mining factories;(2) The mining facilities are constructed at the safe areas or watersheds;(3) Scoria plots,concentrator factory and tailing sediment reservoir are constructed in safe areas where the protection measures be easily made against debris flows;(4) The appropriate system and plan of debris flow mitigation including monitoring,remote monitoring and early-warning and emergency plan is established;(5) The stability of waste dump and tailing sediment reservoir are monitored continuously to prevent mining debris flows.  相似文献   

15.
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.  相似文献   

16.
A flume experiment was conducted to investigate the restratification of liquefied sediment strata under a wave load with the focus on the interbedded strata of coarse and fine sediments formed in estuarine and coastal areas. The aim of this research was to study the characteristics and processes of liquefied sediment strata in terms of wave-induced liquefaction. In the experiment, the bottom bed liquefied under the wave action and the liquefied soil moved in the same period with the overlying waves, and the track of the soil particles in the liquefied soil was an ellipse. The sand layer consisting of coarse particles in the upper part, settled into the lower silt layer. The sinking of coarse particles and upward migration of the fine particles of the lower layer induced by liquefied sediment fluctuations are the likely reasons for sedimentation of the sand layer in liquefied silt.  相似文献   

17.
On-spot observation and field reconnaissance of debris flows have revealed that inflexion points in the longitudinal profile of a movable channel may easily become unstable points that significantly affect their entrainment behavior. In this study, small-scale flume experiments were performed to investigate the entrainment characteristics of debris flows over two types of inflexion points, namely, a convex point, which has an upslope gradient that is less than the downslope gradient; and a concave point, which has an upslope gradient that is greater than the downslope gradient. It was observed that when debris flowed over a convex point, the entrainment developed gradually and progressively from the convex point in the downstream direction, and the primary control factors were the slope gradient and friction angle. Conversely, when debris flowed over a concave point, the entrainment was characterized by impacting and impinging erosion rather than traditional hydraulic erosion, and the impingement angle of the flow significantly determined the maximum erosion depth and outflow exit angle. An empirical relationship between the topography change and the control factors was obtained from the experimental data.  相似文献   

18.
Influences of the Wenchuan Earthquake on sediment supply of debris flows   总被引:2,自引:2,他引:0  
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.  相似文献   

19.
Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.  相似文献   

20.
In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号