首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at 10-minute intervals at the Tianshan Station for Snow-cover and Avalanche Research, Chinese Academy of Sciences. 10-layer snow temperature and the snow cover parameters were measured by the snow property analyzer (Snow Fork) in its Stable period, Interim period and Snow melting period. Results indicate that the amplitude of the diurnal fluctuation in the temperature during Snow melting period is 1.62 times greater than that during Stable period. Time up to the peak temperature at the snow surface lags behind the peak solar radiation by more than 2.5 hours, and lags behind the peak atmospheric temperature by more than 0.2 hours during all three periods. The optimal fitted function of snow temperature profile becomes more complicated from Stable period to Snow melting period. 22 h temperature profiles in Stable period are the optimal fitted by cubic polynomial equation. In Interim period and Snow melting period, temperature profiles are optimal fitted by exponential equation between sunset and sunrise, and by Fourier function when solar radiation is strong. The vertical gradient in the snow temperature reaches its maximum value at the snow surface for three periods. The peak of this maximum value occurs during Stable period, and is 4.46 times greater than during Interim period. The absolute value of temperature gradient is lower than 0.1°C cm−1 for 30 cm beneath snow surface. Snow temperature and temperature gradient in Stable period∼Interim period indirectly cause increase (decrease) of snow density mainly by increasing (decreasing) permittivity. While it dramatically increases its water content to change its permittivity and snow density in Snow melting period.  相似文献   

2.
The fresh snow density was observed with snow analyzer (Snow Fork) at Tianshan Station for Snowcover and Avalanche Research, Chinese Academy of Sciences from February 21 to March 5, 2009. Results show that fresh snow density increases from the 5th h to the 291st h after the snowfall, with an average rate of increase of 4.0×10-4 g/(cm3·h) (R2 = 0.943). Analysis shows that fresh snow density is negatively correlated with the compac-tion rate of fresh snow (R2 = -0.960). Inversely, it is positively correlated ...  相似文献   

3.
Snowpack is a combination of several snow layers. Accordingly, snowpack natural metamorphism is composed of several stages. The aim of this study is to investigate the natural snow metamorphism at the snow layer unit. The field investigation was conducted at the Tianshan Station for Snow Cover and Avalanche Research, Chinese Academy of Sciences(43°16' N, 84°24' E, and 1,776 m a.s.l.), during the winter of 2010-2011. A complete metamorphic procedure and the corresponding microstructure of a target snow layer were tracked. The results indicate that: the ideal and complete metamorphic process and the corresponding predominant snow grain shape have 5 stages: 1) unstable kinetic metamorphism near the surface; 2) unstable kinetic metamorphism under pressure; 3) stable kinetic metamorphism; 4) equilibrium metamorphism; 5) wet snow metamorphism. Snow grain size sharply decreased in the surface stage, and then changed to continuously increase. Rapid increase of grain size occurred in the stable kinetic metamorphism and wet snow metamorphism stage. The characteristic length was introduced to represent the real sizes of depth hoar crystals. The snow grain circularity ratio had a variation of "rapid increase–slow decrease–slow increase", and the snow aggregations continuously increased with time. Snow density grew stepwise and remained steady from the stable kinetic to the equilibrium metamorphism stage. The differences in metamorphism extent and stages among snow layers, led to the characteristic layered structure of snowpack.  相似文献   

4.
The state of the cryosphere in tropical regions is of great importance because the temperature around the glaciers, permafrost and snow cover always fluctuates near the melting point. These thermal conditions and their high sensitivity to climate change cause the accelerated disappearance of these elements; therefore, it is important to know the climatic factors that regulate them, as well as the physical characteristics of each cryospheric element. Unlike glaciers, permafrost and snow cover have not been widely studied. In recent decades, the study of the glacial and periglacial environment has been carried out in intertropical mountains. However, despite the altitude of their relief and the frequent occurrence of snowfall in tropical high mountains, the conditions that determine such events have been barely analyzed; and in the case of Mexico, the volume of snowfall and its thickness have not been quantified either, as well as their corresponding duration. Consequently, this work is aimed to analyze the temperature and precipitation conditions that determine the snowfall at the higher part of the Nevado de Toluca volcano; at the same time, the conditions of the cryotic climate and their possible implication on the surface are studied. The analysis of data from 1965 to 2016, using frequency statistics, allowed to realize that snowfall occurs with low intensity, its accumulation being less than 10 cm thick and 10 mm of snow water equivalent, which causes the snowpack to stay only a few weeks on average. At the same time, it was determined that there is a significant increase in the number of freeze-thaw cycles. Therefore, due to the climate conditions and their influence on the mountain surface, it is probable that the bedrock is subject to a greater gelifraction dynamics, and the unconsolidated soil surface increases; the combination of the above could cause a greater geomorphological dynamic over time, particularly due to debris flows, and by water and wind erosion of the surface. This work is intended to serve as a reference for the high mountain environment in the intertropical regions.  相似文献   

5.
光谱混合分析能够提取亚像元信息,被广泛地应用于遥感影像目标探测之中。本文针对MODIS积雪遥感影像,基于光谱混合分析框架,利用渐进辐射传输模型建立不同粒径大小的雪反射率光谱库,提出了一种考虑端元变化及二次辐射的雪盖面积反演算法。此算法首先利用渐进辐射传输模型建立不同粒径大小积雪的反射率光谱库,然后使用序贯最大角凸锥方法获取植被、土壤与岩石、阴影的光谱库。在建立各种地物反射率光谱库之后,利用均方根误差最小的方法获取最优端元组合。在此基础上,考虑端元独立辐射以及积雪与其它地物的二次辐射过程,利用稀疏光谱混合模型获取积雪面积与雪粒径大小。实验结果表明:此方法能够同时反演雪粒径与积雪面积,反演的雪粒径相比单波段的渐进辐射传输模型小,反演的积雪面积相比MOD10A1产品精度略微提高。  相似文献   

6.
In debris flow modelling,the viscosity and yield stress of fine-grained sediments should be determined in order to better characterize sediment flow.In particular,it is important to understand the effect of grain size on the rheology of fine-grained sediments associated with yielding.When looking at the relationship between shear stress and shear rate before yielding,a high-viscosity zone(called pseudoNewtonian viscosity) towards the apparent yield stress exists.After yielding,plastic viscosity(called Bingham viscosity) governs the flow.To examine the effect of grain size on the rheological characteristics of fine-grained sediments,clay-rich materials(from the Adriatic Sea,Italy; Cambridge Fjord,Canada; and the Mediterranean Sea,Spain),silt-rich debris flow materials(from La Valette,France) and silt-rich materials(iron tailings from Canada) were compared.Rheological characteristics were examined using a modified Bingham model.The materials examined,including the Canadian inorganic and sensitive clays,exhibit typical shear thinning behavior and strong thixotropy.In the relationships between the liquidity index and rheological values(viscosity and apparent yield stress),the effect of grain size on viscosity and yield stress is significant at a given liquidity index.The viscosity and yield stress of debris flow materials are higher than those of low-activity clays at the same liquid state.However the viscosity and yield stress of the tailings,which are mainly composed of silt-sized particles,are slightly lower than those of low-activity clays.  相似文献   

7.
This study demonstrated the usefulness of very long-range terrestrial laser scanning (TLS) for analysis of the spatial distribution of a snowpack, to distances up to 3000 m, one of the longest measurement range reported to date. Snow depth data were collected using a terrestrial laser scanner during 11 periods of snow accumulation and melting, over three snow seasons on a Pyrenean hillslope characterized by a large elevational gradient, steep slopes, and avalanche occurrence. The maximum and mean absolute snow depth error found was 0.5-0.6 and 0.2-0.3 m respectively, which may result problematic for areas with a shallow snowpack, but it is sufficiently accurate to determine snow distribution patterns in areas characterized by a thick snowpack. The results indicated that in most cases there was temporal consistency in the spatial distribution of the snowpack, even in different years. The spatial patterns were particularly similar amongst the surveys conducted during the period dominated by snow accumulation (generally until end of April), or amongst those conducted during the period dominated by melting processes (generally after mid of April or early May). Simple linear correlation analyses for the 11 survey dates, and the application of Random Forests analysis to two days representative of snow accumulation and melting periods indicated the importance of topography to the snow distribution. The results also highlight that elevation and the Topographic Position index (TPI) were the main variables explaining the snow distribution, especially during periods dominated by melting. The intra- and inter-annual spatial consistency of the snowpack distribution suggests that the geomorphological processes linked to presence/absence of snow cover act in a similar way in the long term, and that these spatial patterns can be easily identified through several years of adequate monitoring.  相似文献   

8.
气候变暖背景下高海拔山区融雪(冰)以及强降水引发的洪水愈加难以预测,通过山区雨雪分离可判定引发洪水的温度条件,从而为山洪准确预报提供简单而科学的参考依据。本研究以昆仑山提孜那甫河流域为例,基于流域内不同海拔气象站2012-2016年的降水以及温度数据,结合MOD10A2积雪数据,采用温度积分法和概率统计方法,利用研究期内的平均温度,确定出不同降水形态对应的温度条件,以达到雨雪分离的目的。研究结果表明,莫木克站最大温和积温分别达到20.91 ℃和51.82 ℃时,降水可判定为降雨,最大温和积温分别低于18.13 ℃,43.69 ℃时,降水可判定为降雪;库地站最大温和积温分别达到14.51 ℃,33.17 ℃时,降水可判定为降雨,最大温和积温分别低于13.57 ℃,31.68 ℃时,降水可判定为降雪;西合休站最大温和积温分别达到9.43 ℃,19.53 ℃时,降水可判定为降雨,最大温和积温分别低于8.22 ℃,19.4 ℃时,降水可判定为降雪。利用流域内气象站点附近乡镇的气象统计数据对温度条件及分离结果进行验证,在海拔2000 m以下、2000~3000 m以及3000 m以上不同海拔地区的准确率分别为92.86%、79.49%以及88.3%。本研究可为判别洪水类型和洪水预报提供科学参考。  相似文献   

9.
准确掌握积雪覆盖信息对于气象、水文和全球气候变化研究都具有重要的意义。遥感技术在进行大范围、高频率的积雪覆盖监测中发挥着重要的作用。目前,SNOMAP算法是用于积雪遥感监测最普遍的技术手段,其核心是利用固定阈值的归一化差分积雪指数(Normalized Difference Snow Index,NDSI)进行积雪识别,但这种方法忽略了积雪光谱信息的时相变化,会产生积雪监测的误差。本文提出了一种动态NDSI阈值方法,以纯永久积雪像元的平均NDSI值作为参照系调整固定的NDSI阈值,从而削减影像光谱值波动对积雪识别的影响。以三江源地区作为研究区域,将基于每日MODIS数据进行积雪监测最佳的NDSI阈值与同日纯永久积雪像元的平均NDSI值作线性回归,通过每日纯永久积雪像元平均NDSI值的变化来调整用于积雪识别的NDSI阈值。结果表明:① 基于每日MODIS数据进行积雪覆盖监测最佳的NDSI阈值与同日纯永久积雪像元的平均NDSI值之间存在较好的线性关系,决定系数R 2达到0.86;② 三江源地区动态NDSI阈值的范围为0.29~0.37,其平均值在0.33左右,说明MODIS全球积雪面积产品中将NDSI阈值取为0.40会低估三江源地区的积雪面积;③ 与采用固定NDSI阈值0.33的监测方法相比,动态NDSI阈值法近似率、总体分类精度和F值的平均值分别提高了5.17%、0.70%、1.14%。  相似文献   

10.
青藏高原作为地球第三极增温明显,相关研究多集中于青藏高原冰雪动态,很少关注冰雪消融后岩漠的变化。岩漠通过地气相互作用影响着全球气候变化的区域差异。本文通过梳理青藏高原冰雪、冰雪消融区、岩漠动态变化遥感监测方法体系,着重分析了各遥感数据来源及提取方法的优缺点和适用性,并对基于遥感技术条件下青藏高原冰雪动态监测、冰雪消融区岩漠动态变化监测的数据来源、研究方法与技术进行了总结。目前,青藏高原冰雪动态变化遥感监测数据来源多样、研究方法成熟,而冰雪消融区岩漠动态变化遥感监测尚未形成系统研究。在人为干扰不明显背景下,青藏高原冰雪消融区岩漠的动态变化,在一定程度上也可作为对冰雪变化遥感监测的补充。  相似文献   

11.
The important effects of snow cover to ground thermal regime has received much attention of scholars during the past few decades. In the most of previous research, the effects were usually evaluated through the numerical models and many important results are found. However, less examples and insufficient data based on field measurements are available to show natural cases. In the present work, a typical case study in Mohe and Beijicun meteorological stations, which both are located in the most northern tip of China, is given to show the effects of snow cover on the ground thermal regime. The spatial(the ground profile) and time series analysis in the extremely snowy winter of 2012–2013 in Heilongjiang Province are also performed by contrast with those in the winter of 2011–2012 based on the measured data collected by 63 meteorological stations. Our results illustrate the positive(warmer) effect of snow cover on the ground temperature(GT) on the daily basis, the highest difference between GT and daily mean air temperature(DGAT) is as high as 32.35℃. Moreover, by the lag time analysis method it is found that the response time of GT from 0 cm to 20 cm ground depth to the alternate change of snow depth has 10 days lag, while at 40 cm depth the response of DGAT is not significant. This result is different from the previous research by modeling, in which the response depth of ground to the alteration of snow depth is far more than 40 cm.  相似文献   

12.
Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5°C in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.  相似文献   

13.
The presence of diatoms is accompanied by the production of a large amount of extracellular polymeric substances,which are mainly composed of carbohydrates.Transparent exopolymer particles(TEP)are a large class of extracellular polymeric substances with high stickiness that promotes the formation of aggregates and marine snow,which affects marine bio-carbon pump efficiency.The purpose of this research was to determine how temperature increases affect the allocation of cellular carbohydrates and the formation and aggregation of TEP.The results showed that the responses of two different diatom species(Thalassiosira weissflogii and Skeletonema marinoi)differed according to temperature.The cell density and chlorophyll a concentration of the former were not significantly correlated with temperature,while those of the latter were significantly decreased with increasing temperature.This indicates that the two species of diatom may have different heat tolerance ranges.A temperature increase will promote significant formation of TEP by both types of diatoms,including aggregation of S.marinoi as the temperature rises,meaning that the high temperature will produce an aggregate with a larger particle size and thus may increase the sedimentation rate of organic carbon.Moreover,the TEP aggregation of T.weissflogii did not increase;therefore,its particle size was smaller,and so it may remain on the sea surface at high temperatures for longer periods.These influences have a profound impact on the biogeochemical cycling of carbon.  相似文献   

14.
The grain size and palinology of sediment and the frequency of 14C dada provide an integrated reconstruction of the Holocene warm-humid phases of the North China Plain. Two clear intense and long-lasting warm-humid phases were identified by comprehensive research in this region. The first phase was dated back to the early Holocene (9 000–7 000 a BP), and the second was centered at 5 000–3 000 a BP. The warm-humid episode between 9 000 and 7 000 a BP was also recognized at other sites showing global climatic...  相似文献   

15.
DuringthethreeMt.QomolangmaExpeditionsof1959-1960,1966-1968and1975,ChinesescientistshadobtainedmanydataofglaciersinthedistrictofMt.Qomolangma(Wangetal.,1980;Xieetal.,1975;Zhangetal.,1975).InMay1997,Prof.QinDaheandProf.PaulA.Mayewskiorganizedanothe…  相似文献   

16.
From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mt. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due to its large area with glacier lakes at the tongue of the Rongbuk Glacier, a large amount of stream flow was found at night, which indicates the strong storage characteristic of the Rongbuk Glacier catchment. There was a time lag ranging from 8 to 14 hours between daily discharge peaks and maximum melting (maximum temperature). As melting went on the time lag got shorter. A high correlation was found between the hydrological process and daily temperature during the ablation period. The runoff from April to October was about 80% of the total in the observation period. Compared with the discharge data in 1959, the runoff in 2005 was much more, and the runoff in June, July and August increased by 69%, 35% and 14%, respectively. The rising of temperature is a major factor causing the increase in runoff. The discharges from precipitation and snow and ice melting are separated. The discharge induced by precipitation accounts for about 20% of the total runoff, while snow and ice melting for about 80%.  相似文献   

17.
Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage.  相似文献   

18.
19.
Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities. To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial, two sediment cores were collected in Xincun Lagoon, southeastern Hainan Island and (210) ~Pb activities, grain size parameters, total organic carbon(TOC), total nitrogen(TN), total inorganic carbon(TIC) and stable carbon isotopes(δ~(13)C) were measured. The results show that in 1770–1815, the decreasing water exchange capacity with outer open water, probably caused by the shifting and narrowing of the tidal inlet, not only diminished the currents and fined the sediments in the lagoon, but also reduced the organic matter of marine sources. From 1815 to 1950, the sedimentary environment of Xincun Lagoon was frequently influenced by storm events. These extreme events resulted in the high fluctuation of sediment grain size and sorting, as well as the great variation in contributions of terrestrial(higher plants, soils) and marine sources(phytoplankton, algae, seagrass). The extremely high content of TIC, compared to TOC before 1950 could be attributed to the large-scale coverage of coral reefs. However, with the boost of seawater aquaculture activities after 1970, the health growth of coral species was severely threatened, and corresponding production and inorganic carbon burial flux reduced. The apparent enhanced inorganic carbon burial rate after 1990 might result from the concomitant carbonate debris produced by seawater aquaculture. This result is important for local government long-term coastal management and environmental planning.  相似文献   

20.
西南低涡是对流层下层的中尺度扰动。本文在零级近似条件下,采用p坐标系的基本方程组,在边界层内设计两层模式。通过一定的简化方程组后,得到:当Z≤1/2[kL~2/(μ~2Knu~*)] 时,摩擦效应具有二重性,一方面使扰动减弱;另一方面使扰动增强,而前者的影响略大于后者,最终使扰动消失。频率随高度Z的降低而增加。当Z>1/2[kL~2/(μ~2Knμ~*)]时,摩擦作用甚微,几乎可以忽略不计。频率虽然有两个值,但随高度Z的增加,他们趋于一个常值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号