首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Fabric and crystal characteristics of Bohai and Arctic sea ice   总被引:1,自引:0,他引:1  
1 IntroductionBohaione yeariceandAntarcticonehavethesimilarsurface featuresandcorre spondingfabricandcrystalcharacteristics (Allison 1 997;Lietal.1 997;Qin 1 991 ) .DuringtheChinaFirstArcticExpedition ,theresultsinthestudyofone yearicefromBohaiandAntarcticwereusedfo…  相似文献   

2.
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

3.
1 IntroductionSeaice ,asanimportantcomponentoftheArcticclimatesystem ,hasdrawnsignifi cantscientificinterest.Seaicethicknessanditsmorphologyhavedramaticimpactsono cean atmosphere iceinteractions(Wadhams 1 994;Barryetal.1 993 ;Dickson 1 999;PadhamsandNorman 2 0 0 0 ) ,whichdirectlyaffecttheexchangeprocessandspeedofheatandmassbetweentheoceanandtheatmosphere ,dominatethephysicalmechanicsfea turesofseaice ,andaffecttheseaicemovement&deformationaswellasicefreezing&meltingprocess(Hollandetal.1 99…  相似文献   

4.
北极海冰范围时空变化及其与海温气温间的数值分析   总被引:1,自引:0,他引:1  
本文利用美国国家冰雪中心提供的1989-2014年海冰范围资料,分析了北极海冰范围的年际变化和季节变化规律。分析发现,北极海冰范围呈减少趋势,每年减小5.91×104 km2,夏季减少趋势显著,冬季减少趋势弱。北极海冰范围显现相对稳定的季节变化规律,海冰的结冰和融化主要发生在各个边缘海,夏季期间的海冰具有融化快、冻结快的特征。结合海温、气温数据,进行北极海冰范围与海温、气温间的数值分析,结果表明北极海冰范围变化通过影响北极海温变化进而影响北极气温变化。海冰范围的季节变化滞后于海温和气温的季节变化。基于北极考察走航海温气温数据,进行楚科奇海海冰范围线与海温气温间的数值分析,发现楚科奇海海冰范围线所在区域的海温、气温与纬度高低、离陆地远近有关。  相似文献   

5.
Remote sensing data from passive microwave and satellite-based altimeters, associated with the data measured underway, were used to characterize seasonal and spatial changes in sea ice conditions along...  相似文献   

6.
7.
Role of sea ice in air-sea exchange and its relation to sea fog   总被引:1,自引:0,他引:1  
Synchronous or quasi-synchronous stereoscopic sea-ice-air comprehensive observation was conducted during the First China Arctic Expedition in summer of 1999. Based on these data, the role of sea ice in sea-air exchange was studied. The study shows that the kinds, distribution and thickness of sea ice and their variation significantly influence the air-sea heat exchange. In floating ice area, the heat momentum transferred from ocean to atmosphere is in form of latent heat; latent heat flux is closely related to floating ice concentration; if floating ice is less, the heat flux would be larger. Latent heat flux is about 21 23.6 W*m-2, which is greater than sensible heat flux. On ice field or giant floating ice, heat momentum transferred from atmosphere to sea ice or snow surface is in form of sensible heat. In the floating ice area or polynya, sea-air exchange is the most active, and also the most sensible for climate. Also this area is the most important condition for the creation of Arctic vapor fog. The heat exchange of a large-scale vapor fog process of about 500000 km2 on Aug. 21 22,1999 was calculated; the heat momentum transferred from ocean to air was about 14.8×109 kW. There are various kinds of sea fog, radiation fog, vapor fog and advection fog, forming in the Arctic Ocean in summer. One important cause is the existence of sea ice and its resultant complexity of both underlying surface and sea-air exchange.  相似文献   

8.
Status of the Recent Declining of Arctic Sea Ice Studies   总被引:2,自引:0,他引:2  
In the past 30 years, a large-scale change occurred in the Arctic climatic system, which had never been observed before 1980s. At the same time, the Arctic sea ice experienced a special evolution with more and more rapidly dramatic declining. In this circumstance, the Arctic sea ice became a new focus of the Arctic research. The recent advancements about abrupt change of the Arctic sea ice are reviewed in this paper .The previous analyses have demonstrated the accelerated declining trend of Arctic sea ice extent in the past 30 years, based on in-situ and satellite-based observations of atmosphere, as well as the results of global and regional climate simulations. Especially in summer, the rate of decrease for the ice extents was above 10% per decade. In present paper, the evolution characteristics of the arctic sea ice and its possible cause are discussed in three aspects, i.e. the sea ice physical properties, the interaction process of sea ice, ocean and atmosphere and its response and feedback mechanism to global and arctic climate system.  相似文献   

9.
Potential links between the Arctic sea-ice concentration anomalies and extreme precipitation in China are explored. Associations behind these links can be explained by physical interpretations aided by...  相似文献   

10.
本文应用统计方法分析陆雪和海冰与东亚夏季风的关系。分析结果表明:前期海冰和陆雪,对夏季风强度有影响,而与夏季风同时的海冰和陆雪的异常,却与夏季风相关甚小,这是由于大气状况的变化与下垫面的能量储放有关。本文初步探讨北极海冰对东亚夏季风影响的可能途径,认为海冰通过大西洋海温、大西洋副热带高压及青藏高压,由夏季对流层上层的东西热力环流圈和季风环流圈,对东亚夏季风起一定影响。  相似文献   

11.
The sea ice community plays an important role in the Arctic marine ecosystem. Because of the predicted environmental changes in the Arctic environment and specifically related to sea ice, the Arctic pack ice biota has received more attention in recent years using modem ice-breaking research vessels. Studies show that the Arctic pack ice contains a diverse biota and besides ice algae, the bacterial and protozoan biomasses can be high. Surprisingly high primary production values were observed in the pack ice of the central Arctic Ocean. Occasionally biomass maximum were discovered in the interior of the ice floes, a habitat that had been ignored in most Arctic studies. Many scientific questions, which deserve special attention, remained unsolved due to logistic limitations and the sea ice characteristics. Little is know about the pack ice community in the central Arctic Ocean. Almost no data exists from the pack ice zone for the winter season. Concerning the abundance of bacteria and protozoa, more studies are needed to understand the microbial network within the ice and its role in material and energy flows. The response of the sea ice biota to global change will impact the entire Arctic marine ecosystem and a long-term monitoring program is needed. The techniques, that are applied to study the sea ice biota and the sea ice ecology, should be improved.  相似文献   

12.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the PaCific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent (2000-2006) average. The simulated summer (3 months ) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv, which is the highest in the past three decades of the simulation and is 20% higher than the recent average. Particularly, the Pacific water inflow in September 2007 is about 0.5 Sv or 50% above the 2000-2006 average. The strengthened warm Pacific water inflow carries an additional 1.0 x 1020 Joules of heat into the Arctic, enough to melt an additional 0.5 m of ice over the whole Chukchi Sea. In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region, contributing to the warming of surface waters in that region. The heat is in constant contact with the ice cover in the region in July through September. Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007, likely contributing to up to O. 5 m per month additional ice melting in some area of that region.  相似文献   

13.
1 Introduction Itiswellknownthatseaiceinthepolarregionplaysanimportantroleintheglobal climatechangesasapartofclimatesystem(Carleton1989;YuanandMartinson2000, 2001;ChengandBian2002;LiuandMartinson2002;LiuandZhang2004;Gigorand Wallace2002etal).Infact,numerousmodelingstudiessuggestanimportantinfluence throughtheseaicefieldsalone(Grumbine1994,Meehl1990,Rindetal.1995).Inor dertounderstandthevariabilityofArcticandAntarcticseaicealongwiththepossiblecon nectionswithclimaticanomaliesindetail…  相似文献   

14.
A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141st-150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.  相似文献   

15.
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.  相似文献   

16.
北极海冰对全球气候起着非常重要的调制作用,海冰范围是海冰监测的基本参数。近40年,北极地区持续变暖,北极海冰显著减少,进而引发北极自然环境恶化、北半球极端天气频发、全球海平面上升等一系列环境和气候问题。准确获取北极海冰范围及其演变趋势,确定海冰变化对全球气候系统的响应,是研究和预测全球气候变化趋势的关键之一。HasISST和OISST海冰数据集在海冰监测中应用最为广泛,可为北极地区长时间序列海冰变化研究提供基础数据,但这2套数据集空间分辨率相对较低,应用于北极关键区对中国气候响应研究方面存在很大的局限,为解决这一问题和弥补国内海冰监测微波遥感数据的空白,2011年6月27日,国家卫星气象中心(National Satellite Meteorological Center, NSMC)发布了FY(Fengyun, FY)北极海冰数据集,该数据集利用搭载在FY卫星上的微波成像仪(Microwave Radiation Imager, MWRI)数据,使用Enhance NASA Team算法制作,该算法利用前向辐射传输模型模拟北极地区4种海表类型(海水、新生冰、一年冰和多年冰)在不同大气条件下MWRI辐射亮温,进而得到每种大气条件下0~100%的海冰覆盖度查找表(海冰覆盖度每次增加1%),通过观测值与模拟值的比对得到海冰覆盖度,由该数据集计算得到的北极海冰范围在大部分区域与实际情况相符。该产品虽已进行通道间匹配误差修正和定位精度偏差订正,但由于其搭载的微波成像仪(Microwave Radiation Imager, MWRI)天线长度有限,造成传感器探测到的地物回波信号相对较弱,难以区分海冰和近岸附近的陆地,影响了该数据集的精度和应用。为解决这一问题,本文基于美国冰雪中心(National Snow and Ice Data Center, NSIDC)发布的海冰产品对FY海冰数据集进行优化,NSIDC产品利用判断矩阵对海岸线附近的像元进行识别,并对误差像元进行不同程度的修正,由NSIDC产品计算得到的北极海冰范围与实际情况更为符合。数据集优化大大提高了FY海冰数据集的精度,研究结果表明,优化后FY海冰数据集与NSIDC产品相关系数高达0.9997,且二者日、月、年平均最大海冰范围偏差仅为3.5%、1.9%、0.9%,且FY海冰数据集优化过程对其较好的空间分异特征无明显影响。该数据集可正确地反映北极海冰范围及其变化情况,且海岸线附近海冰的分布情况更准确,可为北极海冰变化研究提供可靠的基础数据。  相似文献   

17.
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover.  相似文献   

18.
Using a regional atmospheric model for Arctic climate simulation, two groups of numerical experiments were carried out to study the inlfuence of changes in the underlying surface (land surface, sea sur...  相似文献   

19.
Estimates of near surface layer parameters over 78°N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22-September 3,2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2,among which the main part transported into atmosphere in term of sensible heat and latent heat,which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16×10-3 in the near neutral layer,which is a little smaller than that obtained over 75°N drifting ice.However,to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999,it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes,concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.  相似文献   

20.
Sea ice is a sensitive indicator of climate change and an important component of climate system models. The Los Alamos Sea Ice Model 5.0(CICE5.0) was introduced to the Beijing Climate Center Climate System Model(BCC_CSM) as a new alternative to the Sea Ice Simulator(SIS). The principal purpose of this paper is to analyze the impacts of these two sea ice components on simulations of basic Arctic sea ice, atmosphere, and ocean states. Two sets of experiments were conducted with the same configurations except for the sea ice component used, i.e., SIS and CICE. The distributions of sea ice concentration and thickness reproduced by the CICE simulations in both March and September were closer to actual observations than those reproduced by SIS simulations, which presented a very thin sea ice cover in September. Changes in sea ice conditions also brought about corresponding modifications to the atmosphere and ocean circulation. CICE simulations showed higher agreement with the reference datasets than did SIS simulations for surface air temperature, sea level pressure, and sea surface temperature in most parts of the Arctic Ocean. More importantly, compared with simulations with SIS, BCC_CSM with CICE revealed stronger Atlantic meridional overturning circulation(AMOC), which is more consistent with actual observations. Thus, CICE shows better performance than SIS in BCC_ CSM. However, both components demonstrate a number of common weaknesses, such as overestimation of the sea ice cover in winter, especially in the Nordic Sea and the Sea of Okhotsk. Additional studies and improvements are necessary to develop these components further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号