首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Recently, study in past trends of climate variables gained significant consideration because of its contribution in adaptions and mitigation strategies for potential future changes in climate, primarily in the area of water resource management. Future interannual and inter-seasonal variations in maximum and minimum temperature may bring significant changes in hydrological systems and affect regional water resources. The present study has been performed to observe past(1970-2010) as well as future(2011-2100)spatial and temporal variability in temperature(maximum and minimum) over selected stations of Sutlej basin located in North-Western Himalayan region in India. The generation of future time series of temperature data at different stations is done using statistical downscaling technique. The nonparametric test methods, modified Mann-Kendall test and Cumulative Sum chart are used for detecting monotonic trend and sequential shift in time series of maximum and minimum temperature. Sen’s slope estimator test is used to detect the magnitude of change over a period of time on annual and seasonal basis. The cooling experienced in annual TMax and TMin at Kasol in past(1970-2010) would be replaced by warming in future as increasing trends are detected in TMax during 2020 s and 2050 s and in TMin during 2020 s, 2050 s and 2080 s under A1 B and A2 scenarios. Similar results of warming are also predicted at Sunnifor annual TMin in future under both scenarios which witnessed cooling during 1970-2010. The rise in TMin at Rampur is predicted to be continued in future as increasing trends are obtained under both the scenarios. Seasonal trend analysis reveals large variability in trends of TMax and TMin over these stations for the future periods.  相似文献   

2.
Variations and trends in extreme climate events are more sensitive to climate change than the mean values,and so have received much attention.In this study,twelve indices of temperature extremes and 11 indices of precipitation extremes at 32 meteorological stations in Hengduan Mountains were examined for the period 1961-2008.The results reveal statistically significant increases in the temperature of the warmest and coldest nights and in the frequencies of extreme warm days and nights.Decreases of the diurnal temperature range and the numbers of frost days and ice days are statistically significant.Regional averages of growing season length also display the trends consistent and significant with warming.At a large proportion of the stations,patterns of temperature extremes are consistent with warming since 1961:warming trends in minimum temperature indices are greater than those relating to maximum temperature.As the center of the Shaluli Mountain,the warming magnitudes decrease from inner to outer.Changes in precipitation extremes is low:trends are difficult to detect against the larger inter-annual and decadal-scale variability of precipitation,and only the wet day precipitation and the regional trend in consecutive dry days are significant at the 0.05 level.It can be concluded that the variation of extreme precipitation events is not obvious in the Hengduan Mountains,however,the regional trends generally decrease from the south to the north.Overall,the spatial distribution of temporal changes of all extreme climate indices in the Hengduan Mountains illustrated here reflects the climatic complexity in mountainous regions.  相似文献   

3.
Increases in climate variability, including extremes, may be expected with anthropogenic climate change, but some evidence is contrary. The issue is important because the consequences of variability can be critical for ecosystems. It has long been known and often rehearsed that ecological consequences of increased variability may be greater than those that result from expected changes in mean temperature and precipitation. Tree rings have been useful indicators of ecological response to climate change and used as proxies for climate variability; work in the Rocky Mountains, USA, has been particularly informative. Chronologies from two high elevation species ranging over 2500 km were analyzed for changes in variance through time. These spatially extensive and disaggregated tree ring records do not show a consistent pattern of change in variance over the past 500 or 100 years; heteroscedasticity has recently been greater. A lack of consistent response in growth over a period encompassing changes in mean climate indicates that mountain environments, with inconsistent trends in temperature and precipitation, may be too complex to act as sentinels.  相似文献   

4.
Warming trend in northern East China Sea in recent four decades   总被引:2,自引:0,他引:2  
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957–1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46°C higher during the period of 1977-19...  相似文献   

5.
By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results showed that the warming in summer was 0.15~C/10a in Northeast China, which was higher than that on the global, Northern Hemisphere or Northeast Asia scale in the recent 50 years. The responses of NET to global warming were shown in 3 aspects mainly. Firstly, it became warm and the average temperature increased in summer; secondly, the temperature variability increased, which displayed the increase of climatic instability; thirdly, the disaster of low temperature decreased and high temperature damage increased obviously, but the disaster of low temperature still existed in some areas under global warming background, which would be worthy of notice further.  相似文献   

6.
Climate change has significantly affected hydrological processes and increased the frequency and severity of water shortage, droughts and floods in northeast China. A study has been conducted to quantify the influence of climate change on the hydrologic process in the Tao'er River Basin(TRB), one of the most prominent regions in northeast China for water contradiction. The Soil and Water Assessment Tool(SWAT) model was calibrated and validated with observed land use and hydro-climatic data and then employed for runoff simulations at upper, middle and lower reaches of the river basin for different climate change scenarios. The results showed that a gradual increase in temperature and decrease in annual precipitation in the basin was projected for the period 2020-2050 for both representative concentration pathways(RCP) 4.5 and 8.5 scenarios. The climate changes would cause a decrease in annual average runoff at basin outlet by 12 and 23 million m3 for RCP4.5 and 8.5, respectively. The future runoff in the upstream and midstream of the basin during 2020-2050 would be-10.8% and-12.1% lower than the observed runoff compared to the base period for RCP4.5, while those would be-5.3% and-10.7% lower for RCP8.5. The future runoff will decrease at three hydrology stations for the assumed future climate scenarios. The results can help us understand the future temperature and precipitation trends and the hydrological cycle process under different climate change scenarios, and provide the basis for the rational allocation and management of water resources under the influence of future climate change in the TRB.  相似文献   

7.
根据对Z_(37-2)孔的孢粉分析结果表明,郑州地区,自全新世以来,气候经历三次较大的波动,先是气候开始转暖,气温不高,温凉半湿润;二是气候继续升高,达到“最适宜”气候期,温暖湿润;最后是气候再度下降,降水减少,温凉偏干.本区气侯变化规律,与北京地区基本符合.依据气侯地层学的观点,并结合放射性碳年代测定,本区的全新世地层可以划分为三期:即全新世早期(距今11000~7500a),全新世中期(距今7500~2500a),全新世晚期(距今2500a至今).  相似文献   

8.
In arid regions, mountains fulfill important ecological and economic functions for the surrounding lowlands. In the scenario of global warming, mountain ecosystems change rapidly, especially in the arid region of northwestern China. This paper provides an assessment of the changes in temperature and precipitation in the historical records of climate on the northern slopes of the eastern Tianshan Mountains. A Mann-Kendall nonparametric trend and Sen's tests are employed to analyze the interannual changes and innerannual variability in temperature and precipitatiofi in the regions of low to high altitude. The present study finds that the largest increases in annual temperature are observed at stations in the low altitude regions. The significant increasing trends in temperature tend to occur mainly in late winter and early spring at stations from middle to high altitude, but in summer and autumn at stations of low altitudes. The increasing trends in annual precipitation are found from the middle to high altitude areas, but decreasing trends are found in the low altitude areas. The significant increasing trends in precipitation occur mostly in winter and earlier spring at stations from the middle to high altitudes, while the increasing and decreasing trend coexists at stations of low altitude with most of the significant trend changes occurring in March, June and August.  相似文献   

9.
在气候变化和全球治理挑战日益严峻的背景下,CO2排放及代价评估日益受到学术界和决策者的关注。当前全球范围包括联合国政府间气候变化专门委员会(IPCC)评估在内的几乎所有研究都是基于全球平均CO2浓度来驱动气候模式的,但基于全球CO2平均分布设定开展模拟影响评估在学术界多有争议。首先,综述了大气CO2非均匀分布的证据,评述了大气CO2浓度非均匀分布与地表升温过程的互馈机制。其次,从自然和人为2个维度,梳理了大气CO2浓度非均匀分布形成的原因,并评估了其对地表升温的影响。最后,评述了当前大气CO2浓度非均匀分布研究中存在的问题,进一步展望了其发展趋势,为把握全球与区域碳排放现状及气候变化影响提供科学判据。  相似文献   

10.
Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11°C/decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7°C/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamflow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5% 40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.  相似文献   

11.
I.INTRODUCTIONTheglobalaveragesurfaceairtemperatureoftheearthhasincreasedbyabout0.5℃sincethemid19thcentury(Houghtonetal.,19...  相似文献   

12.
气候变化情景下极端降水事件的频次和强度预估呈增加趋势,这会导致全球部分地区极端降雨诱发地质灾害风险的增加。本文基于中国降雨诱发地质灾害易发性模型和不同地貌分区的累积事件降雨量-降雨历时阈值曲线,采用最新的CMIP6全球气候模式多模式集合结果,基于全球温升目标情景的视角,从地质灾害空间易发性和发生频次两方面,探讨温升情景下中国地质灾害危险性的可能变化及其对暴露人口的潜在影响。结果表明,CMIP6多模式集合预估的多年平均降水在温升1.5℃和2.0℃情景下相比基准时期可能增加5.4%~9.5%,导致中等至极高地质灾害易发区范围预估增加0.33%~0.74%,由于预估的极端降水事件增加,地质灾害发生频次预估增加7.0%~11.2%,进一步综合未来人口空间分布,潜在地质灾害暴露人口可能增加6.20亿人次(18.90%)和4.26亿人次(12.97%)。各地貌分区未来情景下地质灾害危险性预估增加且存在显著的空间异质性,温升2.0℃情景下中等至极高易发性范围相比基准时期增加0.71%~1.28%,地质灾害发生频次预估增加1.2%~15.6%,其中,青藏高原区地质灾害危险性增加最明显。综合考虑未来人口...  相似文献   

13.
青藏高原脆弱的高寒植被对外界干扰十分敏感,使其成为研究植被对气候变化响应的理想区域之一。青藏高原气候变化剧烈,在较短的合成时间研究气候变化对植被的影响十分必要。因此,本文利用GIMMS NDVI时间序列数据集,研究了1982-2012年青藏高原生长季月尺度植被生长的时空动态变化,探讨了其与气温、降水量和日照时数等气候因子的响应关系。结果表明:在区域尺度上,除8月外,其他各月份植被均呈增加趋势,显著增加多发生在4-7月和9月;大部分月份的NDVI增加速率随着时段的延长显著减小,表明NDVI增加趋势放缓;在像元尺度上,月NDVI显著变化的区域多呈增加趋势,但显著减少范围的扩张多快于显著增加。4月和7月植被生长主要是受气温和日照时数共同作用,6月和9月受气温的控制,而8月则主要受降水量的影响。长时间序列NDVI数据集的出现为采用嵌套时段研究植被生长变化趋势奠定了前提,而植被活动变化趋势的持续性则有助于形象表征植被活动变化过程、深入理解植被对气候变化的响应和预测植被未来生长变化趋势。由此推测,青藏高原月NDVI未来增加趋势总体上趋于缓和,但在像元尺度显著变化的区域趋于增加。  相似文献   

14.
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change.  相似文献   

15.
Global climate change has a wide range of impacts, and this paper presents an investigation on how global warming has changed the relationship between air temperature and latitude & altitude using the meteorological data obtained from 160 stations in China. The investigation indicates that there are very distinct seasonal differences in patterns of temperature variation as a function of latitude and altitude: a very significant latitude effect in winter and a very significant altitude effect in summer. However, with global warming, the latitude effect in winter is weakening and the altitude effect in summer is strengthening. This pattern of change in the relationship between temperature and latitude & altitude is helpful in efforts to reconstruct and explain the past temperature patterns and variations.  相似文献   

16.
The phenologies of plants and animals in snow-covered landscapes are expected to accelerate with global warming. However, there are few studies that have examined a range of unrelated taxa in alpine environments to determine whether there is commonality in the proximate causes, synchrony in timing, or the direction of any changes. Records for five alpine animal species and two alpine plant species, chosen primarily for their visibility, were examined to determine their temporal response to regional climate warming. Over the 30-year period studied, they showed an array of different phenological responses. Plant flowering appeared linked to date of snow melt, whereas animal responses varied. Although having accelerated phenologies, two migratory bird species exhibited contrary changes; one to low-altitude warming regardless of snow conditions in the alpine zone (flame robin) and the other to state of the snowpack regardless of low-altitude temperatures (Richard’s pipit). By contrast, the migratory bogong moth arrived significantly later over the years with no apparent explanatory climatic cause. Although bogong moths are not responding to earlier snow melt, insectivorous predators on the ground are. This could lead to a serious mismatch in timing at different trophic levels, putting pressure on endangered vertebrates. Emergence of locally wintering insect species, March flies and Macleay’s swallowtails, were not significantly related to measured climatic parameters over the study period. A consequence of the disparate responses to climate warming recorded here is the questionable value of ‘indicator species’ to examine the impact of climate warming on alpine ecosystems.  相似文献   

17.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   

18.
An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems will be m0re sensitive t0 future climate change c0mpared t0 0thers, 0ur 0bjectives were t0 investigate the impacts 0f climate change 0n variati0n in vegetati0n c0ver in the Qilian M0untains (QLM), China, between 2000 and 2011. T0 acc0mplish this, we used linear regressi0n techniques 0n 250-m MODIS N0rmalized Difference Vegetati0n Index (NDVI) datasets and mete0r0l0gical rec0rds t0 determine spati0temp0ral variability in vegetati0n c0ver and climatic fact0rs (i.e. temperature and precipitati0n). Our results sh0wed that temperatures and precipitati0n have increased in this regi0n during 0ur study peri0d. In additi0n, we f0und that gr0wing seas0n mean NDVI was mainly distributed in the vertical z0ne fr0m 2,700 m t0 3,600 m in elevati0n. In the study regi0n, we 0bserved significant p0sitive and negative trends in vegetati0n c0ver in 26.71% and 2.27% 0f the vegetated areas. C0rrelati0n analyses indicated that rising precipitati0n fr0m May t0 August was resp0nsible f0r increased vegetati0n c0ver in areas with p0sitive trends in gr0wing seas0n mean NDVI. H0wever, there was n0 similar significant c0rrelati0n between gr0wing seas0n mean NDVI and precipitati0n in regi0ns where vegetati0n c0ver declined thr0ugh0ut 0ur study peri0d. Using spatial statistics, we f0und that veeetati0n c0ver freauentlvdeclined in areas within the 2,500-3,100 m vertical z0ne, where it has steep sl0pe, and is 0n the sunny side 0f m0untains. Here, the p0sitive influences 0f increasing precipitati0n c0uld n0t 0ffset the drier c0nditi0ns that 0ccurred thr0ugh warming trends. In c0ntrast, in higher elevati0n z0nes (3,900-4,500 m) 0n the shaded side 0f the m0untains, rising temperatures and increasing precipitati0n impr0ved c0nditi0ns f0r vegetati0n gr0wth. Increased precipitati0n als0 facilitated vegetati0n gr0wth in areas experiencing warming trends at l0wer elevati0ns (2,000-2,400 m) and 0n l0wer sl0pes where water was m0re easily c0nserved. We suggest that spatial differences in variati0n in vegetati0n as the result 0f climate change depend 0n l0cal m0isture and thermal c0nditi0ns, which are mainly c0ntr0lled by t0p0graphy (e.g. elevati0n, aspect, and sl0pe), and 0ther fact0rs, such as l0cal hydr0l0gy.  相似文献   

19.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

20.
The northeastern China is a sensitive region of climate change, whose detailed trend of climate changes is highly interesting. In this study, this kind of variation trend was analyzed. Potential evapotranspiration (PE) and moisture index (MI) were modeled by using Thornthwaite scheme based on the observation data of 1961-2004 from 94 meteorological stations. To describe the climate fluctuation in the northeastern China in 1961-2004, the linear regression method was used to analyze the variation trends of mean annual temperature, mean annual precipitation, PE and MI. Mann-Kendall method was used to test the significant difference. The results show a general increasing tendency in mean annual temperature, mean annual precipitation, PE and MI. However increasing tendency was more significant in mean annual temperature and PE than in mean annual precipitation and MI. Analysis of seasonal climate variation indicates that there showed positive trends in winter and in spring, while the positive trend was more significant in winter than in spring. Furthermore, the relations between climate changes and geographical factors were analyzed, the results show that both climate factors and their interannual variability were correlated to latitude, longitude and altitude, suggesting that latitude is the most climate factor affecting climate changes, followed by altitude and longitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号