首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
针对从Li DAR点云数据中提取建筑物难的问题,提出一种顾及上下文信息的机载点云建筑物自动化提取方法。首先,以点为分类基元提取视觉分类特征,构建描述点云场景的视觉空间,并利用随机森林分类器初步分类场景。然后基于条件随机场模型将空间上下文信息引入点云分类中,使得分类结果满足局部连续和全局最优的特点。实验结果表明,建筑物可以有效地被分离出来,分离正确率超过96%,将为后续建筑物的自动矢量化提供理论支撑。  相似文献   

2.
提出一种基于Li DAR点云的室内平面图自动生成方法,旨在快速地以室内Li DAR点云数据为基础,实现点云法向量的稳估计,从而自动化提取墙面面片,进而完成室内平面图的构建。实验结果表明:该方法有效抑制室内Li DAR点云数据的噪声(如墙面重影),并能较好地生成室内的平面结构图。  相似文献   

3.
单一基元分类方法难以全面描述复杂的点云场景,采用多基元进行分类成为一种趋势,提出了一种融合点、体素和对象特征的点云分类方法。主要包括4个方面:① 分别确定各层面分类基元,点基元方面采用最优邻域方法,体素基元方面基于八叉树方法进行体素划分,对象基元方面使用改进的多要素分割方法进行点云分割;② 提取各基元分类特征,首先提取点基元分类特征并进行局部线性约束编码(Locality-constrained Linear Coding, LLC),然后以此为基础提取体素基元和对象基元的潜在狄利克雷分布特征(Latent Dirichlet Allocation, LDA)和最大池化特征(Max Pooling, MP);③ 降低分类特征维度,利用随机森林变量重要性算法对分类特征进行筛选与降维;④ 进行点云分类,使用随机森林算法实现点云分类。采用3种不同类型的点云数据进行试验,结果表明融合3种基元特征的分类精度相比于点基元分类分别提升了1.43%、7.02%和2.48%,分类特征降维可以有效降低特征冗余度,分类器分类时间减少约70%;通过与其他算法的对比,新算法分类精度更优,且适用于多种场景点云数据的分类。  相似文献   

4.
针对现有的基于机载LiDAR数据的滤波算法未能充分利用数据提供的所有信息及其所采用的数据结构表达复杂、存在信息损失等缺陷,提出了一种灰度体素结构分割模型下的机载LiDAR 3D滤波算法。算法首先以综合利用机载LiDAR数据的高程及强度信息为目的将点云数据规则化为灰度(体素内激光点的平均强度的离散化表示)体素结构,然后基于各体素间的空间连通性和灰度相似性准则,将灰度体素结构分割并标记为若干个3D连通区域,最后依据地面与其它目标的高差特性提取与其对应的3D连通区域。算法优势在于:基于体素结构设计,为3D滤波算法;综合利用了地面目标的几何及辐射特征,对比传统滤波算法可应用于更复杂的场景;滤波结果为3D地面体素形式,可直接用于创建地面3D模型。实验采用国际摄影测量与遥感协会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的不同密度的机载LiDAR基准测试数据测试了邻域尺度参数的敏感性及提出的算法的有效性,并和其他经典滤波算法做对比。定量评价的结果表明,51邻域为最佳空间邻域尺度;点云密度为0.67点/m2的数据集1的滤波平均完整率、正确率及质量分别为0.9611、0.9248及0.8934;点云密度为4点/m2的数据集2的滤波平均完整率、正确率及质量分别为0.8490、0.8531及0.7404;对比其全经典滤波算法本文算法在高密度点云数据滤波时表现更佳。  相似文献   

5.
为了定量获取复杂地貌构造的特征参数,需要获取高精度、高分辨率的地形地貌数据。在复杂地貌特征探测中,基于无人机航测结合成像点云,可以快速、高效、安全、准确地完成复杂地貌空间探测任务。针对禄丰恐龙谷南缘环状地貌的典型局地场景,采用无人机测量技术获取测区高分辨率的地貌影像数据,构建实景三维场景模型并对其地貌特征进行探测分析研究。试验结果表明:①基于无人机成像点云构建0.2 m分辨率DEM数据能够精准表达研究区真实地貌特征。②通过构建环状场景"内-中-外"7条典型高程剖面线,对比分析证实了研究区地形呈现环形"盆缘"形态特征,内外两侧高程逐渐递减,并且"盆缘"外部剖面高程起伏变化剧烈,地形相较于内部地貌更加复杂。③为进一步探测提取微形地貌特征信息,利用无人机成像原理构建的精准DEM数据结合测区实景三维模型,定量提取了该区坡度、坡向、相对高差、等值线、山脊线、山谷线等相关参数进行精准定量测量及分析探讨。④利用立体三维模型的多视角目视解译与典型场景分析,可清楚辨别出测区冲沟发育以及地质体的节理层理面等微地貌特征。通过以上对地貌三维场景探测试验研究表明,利用实景三维模型能够快速准确呈现测区地貌形态特征,并且成像点云数据综合分析,能够量化、半量化揭示区域构造地质信息。总体而言,无人机测量技术与成像点云3D产品在地质调查中的应用具有实用意义,并具备独特的技术优势。   相似文献   

6.
针对现有的面向机载LIDAR数据的三维平面提取算法存在的基于离散激光点设计导致算法设计困难、仅利用几何特征的一致性导致的在平面平滑过渡区域易产生错误提取的问题,本文提出了一种多值体素连通区域构建下的机载LIDAR三维平面提取方法。该算法基于体素结构设计且综合利用了机载LIDAR数据的几何、激光反射强度信息,将传统的平面特征点聚类转换为基于体素的连通区域构建及空间约束下的反射强度值统计,给出了机载LIDAR点云数据的多值体素结构构建方案及其在此基础上的平面提取方案,有助于基于多值体素模型理论的机载LIDAR点云数据处理及应用的发展。算法具体实现过程为:① 将机载LIDAR点云数据规则化为多值体素结构,其中,体素值为体素内激光点的平均激光反射强度、曲率及法向量;② 在体素结构DSM数据中,选取小曲率体素作为种子,并标记与其空间连通且法向及激光反射强度均一致的连通区域为平面;③ 在体素结构非DSM数据中,将位于连通区域轮廓缓冲区内的激光反射强度满足统计特性的体素标记为平面。本文采用ISPRS提供的机载LIDAR实测数据测试提出算法的精度。定量评价的结果表明本文提出方法的质量和Kappa系数分别可达92.5%和89.4%,与传统仅采用几何特征的区域生长算法相比质量及Kappa系数分别提高了9.68%和11.62%。  相似文献   

7.
针对规则建筑物点云数据特点,基于测量平差理论,提出一种基于点、面几何特征的点云配准算法。首先利用建筑物点云数据中平面与平面的重合关系,推导了基于特征面的点云配准模型|而后结合基于特征点的点云配准模型,给出基于点、面特征的点云配准模型|最后利用实测数据进行实验,证实该方法能在一定程度上提高点云配准精度。  相似文献   

8.
随着计算机视觉和遥感技术的进步,基于遥感影像的密集匹配也成为目前获取高精度点云的重要手段之一。与LiDAR点云类似,点云数据处理的基础步骤就是点云滤波。在数据特征上,密集匹配生成的点云与LiDAR获取的点云既类似但又有区别。本文在渐进形态学滤波算法上添加了特征条件,将点云和图像结合成深度图像,并对深度图像按典型地物类型进行语义分割,从而对与图像平面坐标一致的点云进行标记和首次滤波;然后按几何特征将场景简单分类,按分类结果对应的参数滤波构建地面点三角网;最后综合初滤波结果和语义分割类型标记对特征相似的区域进行优化确认,得到最终的滤波结果,并与布料模拟滤波(CSF)算法进行了对比验证实验。结果表明,基于特征的渐进形态学滤波其I类误差在1.98%以内,Ⅱ类误差在2.33%以内,较适宜对精度要求较高的应用,尤其是混合地形的滤波。  相似文献   

9.
遥感场景分类作为一种理解遥感影像的重要方式,在目标检测、影像快速检索等方向有着重要的应用,当前主流的场景分类方法多关注影像深层次特征的准确提取,忽略了场景目标在不同分布尺度下的差异性。此外,有限的高质量场景标签进一步限制了模型分类性能。为了解决以上问题,本研究提出了基于多尺度对比学习的弱监督遥感场景分类方法,首先利用多尺度对比学习的自监督策略,从大量无标注数据中自动获取影像不同尺度下的特征表示。其次,基于多尺度稳健特征对分类模型利用少量标签进行微调,并结合标签传播方法生成高质量样本标签。最后,结合大量无标签数据构建弱监督分类模型,进一步提升场景分类的能力。本研究在遥感场景AID数据集和NWPU-RESISC45数据集上分别使用1%、5%和10%的标注样本下分类精度分别达到了87.7%、93.67%、95.56%和86.02%、93.15%和95.38%,在有限标注样本条件下与其他基准模型相比有着明显的优势,证明了本文模型的有效性。  相似文献   

10.
针对现有遥感影像缺乏精细化云量描述手段的问题,提出了一种基于GeoSOT网格的遥感影像云量信息精细描述模型。模型建立了遥感影像与GeoSOT网格空间上的映射关系,通过记录每个网格内的影像是否含云,在一定精度上描述云在空间上的分布情况和云量的大小。试验结果表明:该模型能够精细地描述遥感影像云量信息,可实现对影像区域的云量高效检索,提高有云影像使用的效率和影像的可用性。  相似文献   

11.
针对机载点云与航空影像配准精度受点云密度影响较大的问题,本文提出一种交叉点结构特征约束下的机载点云影像配准方法。该方法充分利用激光测距精度较高这一优势,采用点云中的平面结构对影像区域网进行绝对定向约束。首先,利用POS辅助平差后的影像内外方位元素和影像交叉点结构匹配结果,以反投影距离为测度,按照最小二乘准则交会得到交叉点物方结构;然后,在LiDAR点云中自动探测交叉点结构的同名LiDAR平面点;最后,进行交叉点结构特征约束下的航空影像联合区域网平差,得到精确的相机内参数和影像外方位元素。实验结果表明,本文方法在平面和高程方向上均可达到1~2个像素的配准精度。与基于建筑物角特征的配准方法相比,有效克服了点云密度对配准精度的影响,当点云密度较低时,本文方法依然可以取得较高的配准精度。  相似文献   

12.
LiDAR作为一种主动式获取高精度地表几何信息的地形图测绘技术,其获取的点云具有较高的相对精度与绝对精度,可作为无控或稀少控制条件下(无人机)航空影像高精度几何定位的地理参考数据。影像几何定位所能达到的精度依赖于几何参考数据自身的精度,因此评价LiDAR点云的精度对于将其作为地理参考实现航空影像高精度几何定位,具有较强的理论价值与实践意义。本文提出了利用高精度数字线划图(DLG)作为几何参考评定机载LiDAR点云精度的方法。首先,通过比对DLG中高程注记点的高程与LiDAR点云中对应位置处的高程,实现LiDAR点云高程精度评定;然后,通过统计LiDAR墙面点在平面上的投影点到DLG房屋矢量轮廓线的距离,实现LiDAR点云平面精度评定。实验结果证明,本文试验区域LiDAR点云平面和高程精度分别可达到7.2 cm和8.3 cm,可作为大比例尺无人机航空遥感控制数据的有效选择。  相似文献   

13.
本文提出一种结合多种投影影像从车载激光扫描数据中提取建筑物的方法。该方法首先将点云数据投影到XOY平面,生成多种投影影像;然后结合建筑物几何语义特征,对已获取的投影影像进行几何约束与形态学运算,得到建筑物种子区域;在此基础上,通过设置高差阈值,在最高高程影像上进行建筑物种子区域的八邻域区域生长,得到建筑物区域;最后将影像上的建筑物区域反投影到三维空间,提取出建筑物目标。实验结果表明,该方法能有效提取点云数据中的建筑物立面,取得较高的正确率和完整率,且大大提高了计算效率。  相似文献   

14.
机载LiDAR在公路勘测方面的用途日益广泛。该文对直升机机载LiDAR在高速公路改扩建中的应用技术路线可行性进行了研究论证,从地面控制测量、点云数据获取、点云数据处理、成果应用等多个方面进行了阐述,通过分析LiDAR点云数据在5种不同地面控制点布设方案校正下的点云数据精度,论证了利用地面控制点对直升机机载LiDAR点云数据进行平面和高程校正的可行性。  相似文献   

15.
机载LiDAR是获取地表DEM的重要技术之一。本文针对机载LiDAR点云数据在复杂城区环境下的大型建筑及低矮地物滤波问题,提出一种新的二面角滤波法。利用空间二面角的平面角可以表达空间两相交平面相对位置的原理,实现机载LiDAR点云数据滤波。首先,算法提取点云数据中的高程突变点,以非突变点的二面角余弦均值稳定性作为判定迭代结束的条件;其次,分别统计高程突变和非突变点集的二面角余弦值频率分布,以交点处对应余弦值和最后一次迭代的坡度值作为LiDAR点云滤波的判定条件;最后,利用数学形态学“开”算子,去除残留低矮植被,得到可靠的滤波结果。对同一区域机载LiDAR点云数据,通过“二面角法”与“渐进三角网法”进行滤波处理。实验结果表明,二面角滤波法能有效地降低地物点错分为地面点的百分率,且在去除地物信息的同时能良好地保留地形特征。  相似文献   

16.
道路绿化带是城市园林绿地系统重要组成部分,具有重要的生态和环境服务功能,道路绿化带信息的精细分类与提取以及绿化带的动态分析对于道路信息化管理具有重要意义。本文提出基于车载LiDAR技术的道路绿化带自动提取与绿植地物精细分类算法。为验证算法有效性,选取北京市丰台区某路段作为实验区域,一期试验数据采集时间为2015年6月,二期试验数据采集时间为2015年9月。将车载LiDAR点云数据作为原始数据,对原始数据进行剪裁分块等预处理,提高算法运行速度。首先对每段道路点云数据进行地面、低矮地物与高地物分类,并将低矮地物与地面点进行组合;然后通过绿化带的点云特性与空间特征,精确提取出每段点云数据中的绿化带,根据所提取的绿化带确定分类范围,利用各类地物点云的特征差别,对绿化带内地物进行详细分类;最后对比同一区域内的多期绿化带数据,从而判断绿化带面积以及绿化带中的各种地物是否发生变化。为验证算法精度,采用人工交互的方式提取绿化带,并对绿化带内各类地物进行人工分类,以此作为参照将人工统计得到的信息与自动提取出的绿化带信息以及各个分类地物信息进行对比,试验区人工提取绿化带总面积为13 027 m 2,自动提取绿化带总面积为12 749 m 2,2组数据相差278 m 2,相对误差为0.02。自动分类算法在试验区场景中杆状地物的探测率为80%,树木的探测率81.81%,灌木探测率为73.91%。对比2期绿化带数据,发现面积缩减量为129.5 m 2,另外新增3株灌木。实验结果说明了本文所述算法的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号