首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A total of 348 species belonging to 8 phyla and 125 genera were observed in seasonally sampled phytoplankton of tidal rivers from 13 sampling sites around Luoyuan Bay, and all field samplings were carried out in productive period(March/June/August/December) at ebb tide. Bacillariophyta species were the most abundant species, followed by Chlorophyta, Cyanophytes, Euglenophyta, Cryptophyta, Dinophyta, Xanthophyta and Chrysophytas. Seasonal distribution index(SDI) value ranged from 0.63 to 0.86, which meant that species found at those sites in 4 seasons tended to be largely different. Phytoplankton individuals ranged from 5.939×10~4 ind L~(-1) in winter to 75.31×10~4 ind L~(-1) in autumn. Phytoplankton biomass ranged from 0.620 mg L~(-1) in summer to 2.373 mg L~(-1) in autumn. The grey correlation analysis(GCA) showed that the nutrient variables played an important role in the influence on phytoplankton community in every season. The canonical correspondence analysis(CCA) revealed impact of environmental variables on the different species, most of Bacillariophyta species were negative correlation with nutrients(TP and NH_3-N) in the four seasons, Chlorophyta species and Cyanophyta species did not show obvious correlation with environment variables in every season. The combination of GRA analysis and CCA analysis provided a method to quantitatively reveal the correlation between phytoplankton community and environmental variables in water body of tidal rivers at this region.  相似文献   

3.
The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 μg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level(including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that diatoms were the main phytoplankton in this area, and Skeletonema costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema(mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus(spring) →Chaetoceros(summer and autumn) → Coscinodiscus(winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950 s-2000 s.  相似文献   

4.
A cruise was conducted from late August to early September 2004 with the intention of obtaining an interdisciplinary understanding of the Yangtze River Estuary including the biological, chemical and physical subjects. Water sample analysis indicated that total phytoplankton species richness was 137. Of them 81 were found in Bacillariophyta and 48 in Pyrrophyta, accounting for 59.1% and 35.0% respectively. The average cell abundance of surface water samples was 8.8×104 cells L-1, with the maximum, 102.9×104 cells L-1, encountered in the area (31.75°N, 122.33°E) and the minimum, 0.2×104 cells L-1, in (30.75°N, 122.17°E). The dominant species at most stations were Skeletonema costatum and Proboscia alata f. gracillima with the dominance of 0.35 and 0.27. Vertical distribution analysis indicated that obvious stratification of cell abundance and dominant species was found in the representative stations of 5, 18 and 33. Shannon-Wiener index and evenness of phytoplankton assemblage presented negative correlation with the cell abundance, with the optimum appearing in (30.75°N, 122.67°E). According to the PCA analysis of the environmental variables, elevated nutrients of nitrate, silicate and phosphate through river discharge were mainly responsible for the phytoplankton bloom in this area.  相似文献   

5.
I Introduction Phytoplankton play an important role in the primary production of ocean (Ning et al., 1995). They are impor-tant biological mediators of carbon turnover in seawater ecosystems (Zhu et al., 1993). Phytoplankton in Jiaozhou Bay have been preliminarily studied on the subjects of community structure, primary productivity and carbon budget (Qian et al., 1983; Guo et al., 1992; Jiao et al., 1994). It has been found that seasonal variation of phytoplankton cell abundance presents w…  相似文献   

6.
An interannual study on zooplankton abundance, biomass, and species composition was carried out during different seasons in two local coastal water types off Gopalpur, north-western Bay of Bengal. Although, Type-1 was observed with higher zooplankton abundance in comparison to Type-2, pattern of variation followed similar seasonal trends in both water types during individual years. Well pronounced seasonality was observed in zooplankton distribution. Zooplankton community was composed of 217 holoplankton and 22 meroplankton. The holoplankton community was predominated by copepod in terms of species diversity and abundance followed by hydrozoa, tintinnida, malacostraca, gastropoda, chaetognatha and chordata. The meroplankton were represented by larval forms viz. bivalve veliger, brachyuran zoea larvae, caridean larvae, copepod nauplii, fish egg and gastropod veliger. Dominance of copepod species viz. Acrocalanus longicornis, Paracalanus aculeatus and Paracalanus parvus were observed frequently in both water types. The species richness was higher in Type-1 in comparison to Type-2 during both the years. Salinity regimes and availability of phytoplankton prey influenced the distribution and species composition of zooplankton assemblage.  相似文献   

7.
Spatial distribution and temporal dynamics of phytoplankton community and their relationships with environmental factors were studied in the Pearl River Estuary (PRE), South China, in three seasons. Salinity was considered as the key environmental variable controlling horizontal distributions of phytoplankton community composition. A transition from dominance of freshwater diatoms (Aulacoseira granulata and A. granulata v. angustissima) to estuarine species (Skeletonema costatum and Pseudonitzschia delicatissima) was observed in the high flow season (summer) along the estuary gradient; in the low flow season (spring), the inner estuary was relatively homogeneous and some typical estuarine species could be found near the river mouth. In the normal flow season (autumn), a potentially toxic bluegreen species, Microcystis spp. was predominant in the middle reaches of the estuary, which should be seeded from upstream and transported downstream by river discharges. Phytoplankton abundance was negatively correlated with suspended solid content and nutrient concentration in the PRE, suggesting that turbidity and nutrient availability were the crucial factors regulating the algal biomass. Phytoplankton abundance in the outer estuary was enhanced by increasing irradiance and continued to be enhanced until phosphorus-limitation.  相似文献   

8.
A severe Cochlodinium geminatum red tide (>300 km2) was observed in the Zhujiang (Pearl) River estuary, South China Sea in autumn 2009. We evaluated the environmental conditions and phytoplankton community structure during the outbreak. The red tide water mass had significantly higher dissolved inorganic phosphate (DIP), ammonia, and temperature, but significantly lower nitrite, nitrate, dissolved inorganic nitrogen (DIN), and DIN/DIP relative to the non-red-tide zones. The phytoplankton assemblage was dominated by dinoflagellates and diatoms during the red tide. C. geminatum was the most abundant species, with a peak density of 4.13×107 cell/L, accounting for >65% of the total phytoplankton density. The DIN/DIP ratio was the most important predictor of species, accounting for 12.45% of the total variation in the phytoplankton community. Heavy phosphorus loading, low precipitation, and severe saline intrusion were likely responsible for the bloom of C. geminatum.  相似文献   

9.
Based on the field survey data of four cruises in 2011, all phytoplankton communities in the southern Yellow Sea (SYS) were investigated for the species composition, dominant species, abundance and diversity indices. A total of 379 species belonging to 9 phyla were identified, of which the most abundant group was Bacillariophyta (60.9%), followed by Pyrrophyta (23.7%) and Haptophyta (6.9%). The seasonal distribution of abundance was: summer (4137.1×103 ind m?3) > spring (3940.4×103 ind m?3) > winter (3010.6×103 ind m?3) > autumn (340.8 ×103 ind m?3), while the horizontal distribution showed a decreasing tendency from inshore to offshore regions. The dominant species of phytoplankton varied in different seasons. The dominant species were Thalassiosira pacifica, Skeletoema spp. and Chaetoceros cinctus in spring, Chaetoceros debbilis, Chaetoceros pseudocurvisetus and Chaetoceros curvisetus in summer, Thalassiosira curviseriata, Alexandrium catenella and Ceratium fusus in autumn, Paralia sulcata, Phaeocystis sp. and Bacillaria paradoxa in winter, respectively. In SYS, the group of temperate coastal species was the major ecotype, and the groups of the central SYS species and oceanic species were also important constituents. The average values of Shannon-Weaver diversity index (H’) and Pielou evenness index (J) were 2.37 and 0.65 respectively. The indices H’ and J in the open sea were higher than those in coastal waters. Obvious co-variation tendencies between H’ and J were observed in all but the summer cruise of this survey.  相似文献   

10.
Seasonal variations in the phytoplankton community and the relationship between environmental factors of the sea area around Xiaoheishan Island are investigated in the present study. Xiaoheishan Island is located at 37°58′14″N and 120°38′46″E in Shandong Province, China. A total of 65 species of phytoplankton belonging to three phyla and 27 genera were identified, with Bacillariophyta having the largest number of species. The annual average chlorophyll a concentration for this area was 3.11 μg/L, and there occurs a Skeletonema costatum bloom in winter. The Shannon-Weaver indexes(log_2) of the phytoplankton from all stations were higher than 1, and the Pielou indexes were all higher than 0.3. The results of the canonical correspondence analysis(CCA) indicated that water temperature, PO_4~(3ˉ) and Cu were the environmental factors that had the greatest influence on the distribution of the phytoplankton community throughout the entire year. Although the concentration of heavy metal is well up to the state standards of the first grade of China(GB 3097-1997), these metals still have an impact on the phytoplankton community from this area.  相似文献   

11.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

12.
We cultured different-sized fractions of dominant phytoplankton species, Skeletonema costatum, Chaetoceros curvisetus, and Thalassiosira nordenskiöldii, collected in different sea areas in various seasons, and measured and compared their C, N, P, Si contents. The N content of these species is similar, while the C, P, and Si contents of S. costatum from eutrophic Changjiang (Yangtze River) estuary are higher than those from Jiaozhou Bay (JZB), particularly the content of Si. The C, N, P, and Si contents of cultured phytoplankton in JZB increase with size fraction augmentation, and the percentages of C, N, and P follow the same trend, while the percentage of Si remain constant. Moreover, S. costatum from small-sized fraction assimilated Si more easily than C. curvisetus and T. nordenskiöldii, which is explained by the dominance of S. costatum under the conditions of low SiO3-Si concentration in JZB. The C, N, P, and Si contents of cultured S. costatum collected during summer and winter are higher, which is consistent with the phytoplankton blooming seasons in JZB. The SiO3-Si concentration of seawater during spring restrain the growth of phytoplankton, supported by the fact that the N, P, and Si contents and their ratios in cells of cultured S. costatum are low in spring season.  相似文献   

13.
Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO3^--N, NO2^--N, NH4^ -N, SIO3^2--Si, PO4^3--P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq. ( 1 ) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C, the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D, the coefficient of water temperature‘s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant-nutrient concentTations but low phytoplankton biomass in some waters is reasonably explained in this paper.  相似文献   

14.
Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment,southwestern China,to understand phytoplankton community structure and environmental factors.The relationship between phytoplankton community structure and environmental factors including hydrological,meteorological,physical,and chemical variables were explored using multivariate analysis.A total of 81 taxa of phytoplankton were identified,which were mainly composed of chlorophyta,bacillariophyta,and cyanobacteria.The phytoplankton community was dominated by Pseudanabaena limnetica during summer and fall and by Cyclotella meneghiniana during winter and spring.The abundance of phytoplankton ranged from 0.24×104 cells/L to 33.45×106 cells/L,with the minimum occurring during February 2010 and the maximum during July 2009.The phytoplankton community was dominated mainly by cyanobacteria from April to September,and by bacillariophyta and pyrrophyta from October to March.Canonical correspondence analysis showed that temperature,pH values,and orthophosphate were the most important driving factors regulating the composition and dynamics of the phytoplankton community in the estuary.Cyanobacteria and euglenophyta abundance and biomass were affected mainly by temperature and pH values,while most chlorophyta and bacillariophyta were influenced by the concentrations of nutrients.  相似文献   

15.
INTRODUCTIONPhytoplaktonhasakeyroleinthemarineecosystemasthebasicpartinthefoodchain ,whichisimportantinformationforassessingproductivitypotentialandfisheryresources.Phytoplanktonalsohasanimportantroleinthecarbonbiogeochemicalcycle,becauseitcanabsorbala…  相似文献   

16.
To understand the responses of a freshwater ecosystem to the impoundment of the Three Gorges Reservoir (TGR), phytoplankton was monitored in the tributaries of the TGR area. From August 2010 to July 2011, algal species composition, abundance, chlorophyll a and other environmental parameters were investigated in the Gaolan River, which is a tributary of Xiangxi River. Thirty-one algal genera from seven phyla were identified. Results show that the lowest concentrations of total phosphorus (TP) and total nitrogen (TN) were 0.06 mg/L and 1.08 mg/L, respectively. The values of TP and TN exceeded the threshold concentration of the eutrophic state suggested for freshwater bodies. In the Gaolan River, the succession of phytoplankton showed clear seasonal characteristics. Different dominant species were observed among seasons under the control of environment factors. In spring and summer, the dominant species were Nitzschia sp. and Aphanizomenon flos-aquae (L.) Ralfs, the limiting nutrient was NO 3 ? -N, and the key environmental factor for phytoplankton population succession was water temperature (WT). In autumn and winter, the dominant species were A. flos-aquae and Chlorella sp., the limiting nutrient was PO 4 3? -P, and the key environmental factors were transparency and WT. This study illustrates the influence of physical and chemical factors on phytoplankton seasonal succession in a tributary of TGR since the downstream regions of Xiangxi River and Gaolan River became reservoirs after impoundment of the Three Gorges Dam. We suggest that this activity has significantly affected water quality in the dam area.  相似文献   

17.
With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010–July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1, 256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H′) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H′ value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagellates was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.  相似文献   

18.
Recent observations support an emerging paradigm that climate variability dominates nutrient enrichment in costal eco-systems, which can explain seasonal and inter-annual variability of phytoplankton community composition, biomass (Chl-a), and primary production (PP). In this paper, we combined observation and modeling to investigate the regulation of phytoplankton dynamics in Chesapeake Bay. The year we chose is 1996 that has high river runoff and is usually called a ’wet year’. A 3-D physical-biogeochemical model based on ROMS was developed to simulate the seasonal cycle and the regional distributions of phytoplankton biomass and primary production in Chesapeake Bay. Based on the model results, NO3 presents a strong contrast to the river nitrate load during spring and the highest concentration in the bay reaches around 80 mmol Nm-3 . Compared with the normal year, phytoplankton bloom in spring of 1996 appears in lower latitudes with a higher concentration. Quantitative comparison between the modeled and observed seasonal averaged dissolved inorganic nitrogen concentrations shows that the model produces reliable results. The correlation coefficient r2 for all quantities exceeds 0.95, and the skill parameter for the four seasons is all above 0.95.  相似文献   

19.
In this paper, the distribution patterns and abundance of pelagic tunicates in the North Yellow Sea of China during the period 2006-2007 were analyzed. Zooplankton samples were obtained with vertical towing from bottom to surface using a WP2 plankton net(200 μm mesh size; mouth area: 0.25 m2). Five species belonging to two classes were identified: Oikopleura dioica, O. longicauda and Fritillaria borealis belonging to class Appendicularia; Salpa fusiformis and Doliolum denticulatum of class Thaliacea. O. dioica and O. longicauda were the dominant species, occurring in the samples of all four seasons, with different distribution patterns. Their maximum abundance were 1664.7 ind. m-3(spring) and 1031.7 ind. m-3(spring) respectively. Following Oikopleura spp. were D. denticulatum, which was found only in autumn with an average abundance of 149.6 ind. m-3, and S. fusiformis, which was detected all the year long except for autumn with low abundance(max. abundance 289.4 ind. m-3 in summer). Only a very small amount of F. borealis was detected in summer samples, with an average abundance of 2.7 ind. m-3. The relationship between tunicates abundances and the environmental factors was analyzed using the stepwise regression model for each species. The variation of appendicularian abundance showed a significant correlation with the surface water temperature and with the concentration of Chl-a. No relationship was found between tunicates abundance and salinity, likely due to the slight changes in surface salinity of the studied area during the four seasons. Salps abundance and that of doliolids were significantly correlated to bottom water temperature, indicating that these two species(S. fusiformis and D. denticulatum) migrate vertically in the water column. In particular D. denticulatum, known to be a warm water species, showed not only an important correlation with water temperature, but also a spatial distribution connected to the warm currents in the North Yellow Sea. The occurrence of D. denticulatum represents an interesting result never found in past research work. Water temperature, algal distribution and currents were the most relevant environmental factors influencing the tunicate abundance and distribution in the North Yellow Sea. Further research is needed in order to get more information on the ecology of these organisms and to better understand their role in the ecosystem including the oceanic food web.  相似文献   

20.
1INTRODUCTIONTheWestLake ( 30°1 5′N ,1 2 0°1 6′E)isasmallshallowlakeinthewesternpartofHangzhouCityinthesoutheasterncoastalareaofChina.Thelakeissur roundedonthreesidesbyhills ;andisfamousforitspicturesquesceneryandinterfusionofhillsandwaterbodies.Thesurfaceareaisabout 5 .66km2 andmeandepthis 1 .8m .Beforethe 1 95 0s ,thelakewaterwascleanandmacrophytesgrewveryluxuriantlyinthelit toralareasofthelake .In 1 95 2 ,WestLakewasdredgedand 70 0× 1 0 4m3 mudwasremovedfromthebottomofthelake …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号