首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
分析GPS时空参考点下卫星钟差参数改正原理,结合伪距观测方程推导BDS单频及双频消电离层组合在标准单点定位、精密单点定位下的差分码偏差(DCB)改正公式。采用MGEX发布的DCB文件,分别进行多个测站的定位解算。结果表明,BDS伪距B1B2及B1B3双频定位DCB改正前E、N方向精度较单频差,严重影响定位精度,改正后E方向精度提高在dm级,N、U方向提高在m级;精密定位下B1B3组合DCB改正后与B1B2组合定位结果非常吻合,静态及仿动态下精度都有提高。  相似文献   

2.
由于接收机类型不同,双频精密单点定位模型之间存在系统的P1C1码间偏差。研究表明,P1C1码间偏差对静态PPP影响很小,但是对动态PPP影响仍需进一步评估。利用自主研制的软件,详细分析P1C1偏差对模拟的动态PPP的影响。结果表明,经过P1C1码间偏差改正后,C1P2类型接收机模拟的动态PPP效果得到改善,但仍然比P1P2类型接收机的定位结果差,表明实验所采用的IGS发布的P1C1偏差产品精度仍有待进一步提高。  相似文献   

3.
分析精密单点定位观测模型中的卫星钟差改正项(包含硬件延迟偏差改正),给出采用IGS精密卫星钟差产品进行卫星钟差改正时的硬件延迟偏差改正方法.并通过实测数据定量分析硬件延迟偏差改正在静态及动态两种定位方式中的影响.实验结果表明:精密单点定位中,硬件延迟偏差改正对静态定位的影响很小,可以忽略;对动态定位的影响可达到cm级,应该加以考虑.  相似文献   

4.
一、GPS测量的误差源和GPS定位网设计 1.GPS测量的误差源 GPS测量误差按其生产源可分3大部分:GPS信号的自身误差,包括轨道误差(星历误差)和SA,AS影响(美国卫星对陆地发射信号的控制系统);GPS信号的传输误差,包括太阳光压,电离层延迟,对流层延迟,多路径传播和由它们影响或其他原因产生的周跳;GPS接收机的误差,主要包括钟误差,通道问的偏差,锁相环延迟,码跟踪环偏差,天线相位中心偏差等。[第一段]  相似文献   

5.
全球导航卫星系统(GNSS)的空间信号测距误差(Signal-In-Space Range Error,SISRE)是影响大地测量用户定位与授时性能的主要因素。本文利用武汉大学提供的2019年事后精密轨道和钟差产品,对北斗三号(BDS-3)广播星历轨道、钟差参数和SISRE精度进行评估与分析。结果表明,北斗三号各MEO卫星广播星历轨道的径向、切向和法向的精度(以RMS表征)分别优于0.12 m、0.60 m和0.50 m,卫星的3D轨道精度基本能够达到0.6 m;BDS-3卫星广播星历钟差参数呈现出明显非零均值偏差,所有卫星钟差参数均方根误差的平均值为0.42 m;仅考虑轨道误差影响时,BDS-3卫星广播星历SISRE值均小于0.15 m,同时考虑钟差参数误差的影响,BDS-3广播星历的SISRE平均值达到0.51 m。  相似文献   

6.
以gbm精密星历和钟差作为参考真值,对GPS、BDS、Galileo以及GLONASS四大系统2017-02-01~02-28的广播星历、钟差以及卫星空间测距误差(SISRE)的精度进行对比分析。结果表明,GPS轨道径向、切向、法向的精度为1 m、0.4 m、0.8 m左右,钟差约为2 ns,卫星信号测距误差(SISRE)约0.4 m;BDS不同类型卫星表现出很大差异;Galileo卫星的径向、切向、法向的精度为0.3 m、0.3 m、0.2 m,钟差约3 ns,SISRE约1 m;GLONASS卫星的径向、切向、法向精度为0.4 m、1.0 m、0.4 m,钟差约7 ns,SISRE约2 m。  相似文献   

7.
具体分析导航定位精度各类影响因素的大小,进而评估Galileo定位性能,为Galileo导航定位用户和系统下一步建设提供参考。以精密轨道和钟差产品作为参考,分析广播星历轨道精度钟差精度,并统计分析两者对用户定位的综合影响,即空间信号误差(URE)的大小。结果显示,轨道误差的均方根误差切向在2 m以内、法向在1 m以内、径向优于0.5 m,钟差均方根在3 ns以内,URE(1 σ)约为0.82 m。仿真分析全球Galileo卫星的可见性及位置精度衰减因子(DOP)值的大小,并采用实测数据对用户环境设备误差(UEE)的主要成分进行分析和统计。分析评估Galileo系统的标准定位性能,在全球范围内标准三维定位精度(1 σ)为3.8~6.4 m。  相似文献   

8.
提出一种改进的混合差分算法,实现实时GPS卫星钟差估计。算法实现过程主要采用4个解算步骤,最终生成播发至用户的实时钟差产品。利用全球分布的68个测站实时数据流进行GPS卫星实时钟差解算,并对2018-01-14~01-19的实时GPS卫星钟差产品采用2种方法进行检核:1)与IGS快速钟差产品比较;2)运用实时动态PPP结果检核。结果显示,基于改进的混合差分算法,利用实时数据流实现的GPS实时卫星钟差产品具备STD为0.15 ns、RMS为0.63 ns的精度,可提供实时cm级定位服务。  相似文献   

9.
讨论了差分码偏差DCB在非差数据中的存在形式,以及在非差定位中的改正。采用实测数据,详细研究了DCB(C_1-P_1)和DCB(P_1-P_2)对非差定位和解算参数的影响。结果表明,DCB(P__1-P_2)对单频单点定位的影响比较显著,必须进行相应的改正;DCB(C_1-P_1)对非差解算参数的影响包括坐标和接收机钟差两个方面,对坐标的影响来自于DCB(C_1-P_1)的卫星硬件部分,对接收机钟差的影响来自于DCB(C_1-P_1)的接收机硬件部分。分析DCB(C__1-P_1)对模糊度参数的影响,结果表明,DCB(C_1-P_1)改正和不改正时,得到的模糊度参数不一致。当采用无电离层延迟C_1/P_2、L_1/L_2和P_1/P_2、L_1/L_2分别进行精密单点定位数据处理时,对应的模糊度参数也有差异,差异值等于卫星DCB(C_1-P_1)的倍数。  相似文献   

10.
对观测量进行高阶电离层改正,利用改正后的观测量求解卫星轨道和卫星钟差,根据所得的卫星轨道和卫星钟差来计算其余测站的对流层。结果显示,二阶电离层在低纬度地区很容易达到1 cm,可使对流层引起2~3 mm的误差。而三阶电离层在低纬度地区一般不超过5 mm,对对流层的影响不会超过0.5 mm。数据测试表明,要获取1 mm精度的对流层,中低纬度地区的二阶电离层必须进行改正,而三阶电离层可以忽略不计。  相似文献   

11.
利用2013-01地磁扰日及静日期间全球不同纬度的18个IGS站的GPS双频数据,联合伪距与相位观测数据,探讨估算单站接收机硬件延迟的有效方法,估算的结果与IGS公布的结果差值基本在1.5 ns以内,月平均值基本在1.0 ns以内。  相似文献   

12.
GPS���ջ����ƫ�DCB����ȷ��   总被引:3,自引:3,他引:0  
???????????λ???α?????????DCB????????????????á??й?????????????繤???2003???????????????繤????????????DCB?????????????±仯??????????????????????????????????1ns??????????????????????????????????????3????????????????仯??  相似文献   

13.
对Tianhui-1C卫星的星载双频GPS数据进行质量分析,利用伪随机脉冲方法进行简化动力学定轨,采用重叠弧段比较法对其精密定轨精度进行初步分析,并从理论上分析星载GPS接收机由单频改为双频对测图精度的影响。实验表明,Tianhui-1C卫星的星载GPS观测数据完整率优于80%,周跳比优于47,L1频点的多路径误差约0.22 m,L2频点的多路径误差约0.23 m,LC组合观测值的验后残差RMS优于9.7 mm。采用轨道重叠弧段比较法对两个时段共48 h的星载GPS数据进行精密定轨精度比较,三维精度优于3.65 cm。定轨精度的提高,可使无地面点控制条件下等高线间距(CI)精度提高3.866 m,高程误差提高1.171 m。  相似文献   

14.
基于西安测绘研究所发布的BDS-3精密轨道和钟差产品,研究B1C-B2a双频组合的卫星端差分码偏差(DCB)改正模型,并分析中国科学院发布的DCB产品的稳定性。采用10个MGEX测站7 d的观测数据,对非差非组合和无电离层组合模型下的B1I-B3I、B1C-B2a两种双频组合的BDS-3精密单点定位精度进行对比分析。结果表明,BDS-3静态定位精度水平方向优于2.0 cm,高程方向优于2.5 cm,收敛时间在31 min左右;模拟动态定位精度水平方向优于3.4 cm ,高程方向优于4.1 cm,收敛时间在60 min左右;B1I-B3I、B1C-B2a两种双频组合定位精度相当且收敛时间较为接近,二者都可用于北斗精密单点定位。  相似文献   

15.
针对北斗三号MEO卫星和IGSO卫星新增加的B1C和B2a信号中长基线RTK定位精度仍未确定的问题,利用4组中长基线实测数据对BDS-3新信号、BDS-3的B1I、B3I信号和GPS的 L1、L2信号进行数据质量分析和中长基线双频RTK定位研究。结果表明,在数据质量方面,BDS-3的可视卫星数和PDOP值优于GPS,BDS-3新信号的信噪比和多路径误差与BDS-3的B1I、B3I信号和GPS的L1、L2信号相当;在中长基线RTK定位方面,BDS-3新信号B1C+B2a组合的模糊度首次固定时间优于BDS-3的B1I+B3I组合,BDS-3新信号B1C+B2a组合的定位精度略优于BDS-3的B1I+B3I组合和GPS的L1+L2组合,可为用户提供cm级定位精度。  相似文献   

16.
介绍北斗广域差分服务新增的分区综合改正数的原理及使用方法,并采用共天线方式进行连续7 d的实际测试。结果显示,未升级过的单频终端伪距定位精度水平方向为2 m,高程方向为3 m,单频分区定位精度水平方向为0.55 m,高程方向为0.80 m;B1B2双频动态分区定位精度水平方向为0.30 m,高程方向为0.55 m。对观测数据进行事后解算,结果显示,在改正信息连续、稳定的情况下,双频动态定位精度水平方向为0.35 m,高程方向为0.50 m;静态模式定位精度水平方向为0.12 m,高程方向为0.22 m。不同分区改正信息取得的静态定位收敛结果之间存在微弱差异,但对定位结果的RMS影响不大。  相似文献   

17.
研究GPS、GLONASS和BDS三系统组合精密单点定位(PPP),包括函数模型、对流层延迟参数和差分码偏差(DCB)参数的解算方法。利用C++语言编制3系统组合PPP程序,分析MEGX网12个连续跟踪站1周观测数据,结果表明,无电离层组合模型和非组合模型的收敛速度和定位精度相当,同一测站在不同时间的收敛速度无明显差异,但非组合模型采用先验电离层信息约束可提高定位的收敛速度。多系统组合定位能改善PDOP值,提高收敛速度和定位精度;3系统组合PPP的水平坐标精度约3 cm,高程精度约5 cm,优于3个系统单独定位或2个系统组合定位的精度;当卫星遮挡较大时,多系统PPP结果较单系统更为稳定。  相似文献   

18.
提出一种差分码偏差估计的简化模型,将测站方向上各穿刺点的VTEC简化为一个参数,分时段进行直接估计。为验证该方法的有效性,采用球谐函数建模和基于GIM的估计方法进行比较分析。选用2016-01近200个IGS测站的GPS+GLONASS数据进行实验,并采用CODE提供的产品进行验证。结果表明,对于GPS(GLONASS)卫星DCB,该方法与其他2种方法估计的结果比较接近,与CODE产品相比平均偏差和标准差分别为-0.3~0.5 ns(GPS)、1.3~0.7 ns(GLONASS)和0.05~0.20 ns(GPS)、0.14~1.10 ns(GLONASS);对于接收机DCB,3种方法与CODE产品的平均偏差分别为-0.6~0.7 ns(GPS)和-1.5~1.5 ns(GLONASS)。实验结果验证了差分码偏差估计简化模型的有效性。  相似文献   

19.
首先采用国际上通用的德国地学中心(GFZ)与武汉大学(WHU)精密产品,对GNSS精密卫星轨道和精密钟差产品精度进行初步评估;然后基于WHU精密轨道和钟差产品对18个分布于东半球的MGEX地面站进行多系统定位测试,同时也对BDS的B1I/B3I与B1C/B2a两组新、旧频点的精密单点定位性能进行对比分析。结果表明:1)四大导航系统(GPS、GLONASS、BDS、Galileo)的卫星轨道产品精度均在cm级,精密钟差内符合精度均优于0.1 ns,北斗三号(BDS-3)卫星钟精度相比北斗二号(BDS-2)有显著提升。2)亚太地区BDS的定位精度优于其他3个系统;在其他地区,GPS定位精度最优(与Galileo基本相当),优于BDS和GLONASS的定位结果。3)BDS PPP平均收敛时间静态模式约为50.33 min、动态模式约为77.83 min,收敛速度略低于GPS、Galileo,优于GLONASS。4)B1C/B2a与B1I/B3I双频消电离层组合PPP定位性能基本相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号