首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 301 毫秒
1.
敦煌西湖自然保护区湿地演化及驱动力分析   总被引:1,自引:0,他引:1  
西湖国家级自然保护区位于河西走廊西端,是敦煌盆地人工绿洲的天然屏障。近几十年来,由于气候变化和人类水土资源过度开发,保护区生态环境持续恶化,湿地退化和沙漠化趋势日趋严重。本文运用多时相资源卫星遥感影像,解译分析了保护区湿地演化规律。结果表明:1980-2013年间有23个年份湿地处于快速退化状态,保护区湿地面积由1.72×104 hm2减少到0.99×104 hm2,减少了42.4%;保护区湿地的斑块数从32个增加到51个,平均斑块面积由537 hm2减少为213 hm2,湿地演化呈破碎化趋势。湿地分布质心向西南方向移动了11.59 km,湿地呈整体向西南缓慢移动的趋势。运用因子分析法对湿地演化的驱动因子进行了分类,并利用投影寻踪模型分析各驱动因子对湿地演化的贡献率,结果表明:下游湿地退化的根本原因是大规模引地表水和开采地下水灌溉,其次是气候变化引起的冰川退缩、径流量衰减。20世纪90年代,西湖保护区湿地处于相对稳定状态,建议敦煌地区耕地维持在20世纪90年代初的2.7×104 hm2水平,或通过节水、调整作物结构和跨流域调水等措施,压缩引地表水和开采地下水水量,灌溉用水需控制在20世纪90年代初的用水水平。该研究成果可为自然保护区湿地保护和流域综合开发提供依据。  相似文献   

2.
近50年来富锦湿地景观遥感与GIS的时空动态分析   总被引:3,自引:0,他引:3  
湿地是重要的自然资源,但是由于自然和人为影响,湿地正在大面积的萎缩,导致功能和效益下降,并危及到区域的持续发展。本文以三江平原挠力河流域富锦(市)作为研究区域,以RS、GIS和Fragstats为技术手段,分析了自1954年以来沼泽湿地的空间和时间退缩过程及其驱动力,重建了自1954年以来的土地利用/土地覆被变化过程。结果表明,湿地面积由1954年的519.917.96hm2下降到105.008hm2,由占总面积的61.27%下降到12.39%,仅是原来面积的17.74%;而耕地面积由223 173.54hm2增加到597 156.25hm2,由占总面积的25.31%增加到70.45%。同时指,出人类的农垦活动是富锦沼泽湿地面积退缩的主要原因。  相似文献   

3.
近40年来白洋淀湿地土地覆被变化分析   总被引:4,自引:0,他引:4  
白洋淀是华北平原上现存最大的天然湖泊,是典型的内陆湿地。最近40年,白洋淀湿地出现了水面萎缩、生态功能急剧退化、生物多样性减小和水体污染严重等生态环境问题。本文利用1964年CORONA侦察卫星影像、1974年和1983年Landsat MSS影像和2002年ETM+影像,对白洋淀湿地的土地覆被变化及其驱动力做了详细分析。结果表明,湿地面积呈减少趋势:1964年为407.3km2,2002年缩减到274.63km2。湿地水面起伏变化大,1964年水面较宽,为346.75km2;到1974的10年间,减少到94.65km2,1983年和2002年水面继续变窄,水面面积分别为67.27km2和46.86km2。引起湿地土地覆被变化的原因包括降雨量的减少、蒸发量的增大、城市发展用水增大、不合理土地利用开发和上游水库、引水工程修筑等。  相似文献   

4.
近20年来厦门市滩涂养殖时空演变与政策驱动分析   总被引:2,自引:0,他引:2  
沿海滩涂是一种重要的湿地资源,也是一种重要的可再生的后备土地资源。在滨海城市,滩涂养殖的时空演变过程能敏感反映产业经济发展、生态环境变化及政策导向三个因素之间的博弈关系。对此,利用1986、1989、1993、1997年TM遥感影像和2001、2003年ETM+遥感影像以及2004年SPOT遥感影像,用单一土地利用动态度、景观破碎度和重心迁移模型,对近20年来厦门市滩涂养殖的时空演变过程进行了分析。结果表明:滩涂养殖面积从1986年的2661.85hm2持续增长到2003年的9776.45hm2,增长了2.67倍,2004年则开始下降到9510.98hm2,在此期间面积的年均变化率从1986~1989年的19.80%逐渐下降到2003~2004年的-2.72%;1986~2004年养殖区的景观破碎度均小于0.00080;空间分布重心总体上向东北方向迁移。对政策驱动机制的初步研究表明,养殖区的这种变化过程与当地的一系列政策措施存在着宏观响应关系。  相似文献   

5.
为了了解黄河三角洲湿地景观类型演变最优模拟模型以及景观的变化趋势,本文采用1996、2006、2016年3期黄河三角洲分类影像,分别利用CA-Markov、LCM、2种模型叠加开展变化模拟。研究发现:① 在相同驱动力因子影响下,空间模拟上LCM比CA-Markov好,数量模拟上,CA-Markov比LCM更贴合,对于变化较大研究区,综合2种模型优势来模拟该湿地变化最佳;② 对于较强的人为、自然灾害干扰,会对模拟精度有影响。在LCM模型中,驱动力相同情况下,生成适宜性图像的转移子模型数量越多,模拟精度越高。对于CA-Markov模型,比例误差系数适宜的设置对数量模拟的精度也有提升;③ 在保持2006-2016年的变化趋势下,综合2种模型模拟的2026年自然湿地面积1252.69 km 2,人工湿地面积1265.00 km 2,非湿地面积924.51 km 2。从2026年黄河三角洲模拟的结果可看出,自然、非湿地的面积减少,人工湿地大量的增加并不断向浅海区域扩张。通过对黄河三角洲湿地变化进行预测分析,可为湿地资源的合理有效利用与管理等提供科学依据。  相似文献   

6.
北京湿地分析与监测   总被引:23,自引:0,他引:23  
在“3S”技术支持下,结合野外调查与室内综合分析,全面调查监测了北京地区湿地的类型、面积。其类型较多、分布较广、湿地环境差异显著,生物多样性丰富。湿地的主要类型包括湖泊湿地、河流湿地、水库、池塘、稻田等自然湿地和人工湿地,其中人工湿地面积为323541.822km2,自然湿地面积为138214.740km2,约占全市面积的0.3%。另外,选择重点水库湿地和典型湿地做了动态变化研究,结果表明:水库湿地中的密云水库、官厅水库和怀柔水库与1998年相比,面积分别减少了42.0%,23.9%和4.9%,典型湿地的景观格局也发生了相应的改变。由此可以看出,北京湿地面积逐年减少、生态环境质量逐年下降。最后,根据北京湿地现状和暴露出来的问题,提出了一些建设性的结论和建议。本项目的实施为进一步研究湿地变化与周边气候、地形地貌、土地利用、植被变化以及社会经济发展情况的关系,分析湿地受威胁因素,评价湿地生态环境现状,提出湿地保护的措施,奠定了基础。  相似文献   

7.
本文利用2000年的TM数据,经过图像增强、合成、几何精纠正、镶嵌和分割,以1∶10万地形图分幅标准,在微机Windows的ARC/INFO软件平台上,人机交互解译,最终获得2000年全国各省的沙漠、沙地和沙漠化土地面积。土地覆盖类型采用二级分类系统,第一级分为6大类:耕地、林地、草地、水域、建设用地和未利用土地。TM解译结果表明,于2000年,新疆维吾尔自治区、内蒙古自治区、青海省和甘肃省的沙漠、沙地和沙漠化土地面积分别为:79361263hm2、58570586hm2、18917225hm2和12340694hm2。面对中国局部生态环境得到改善但整体上土地荒漠化面积每年都在扩大的现实,利用遥感手段快速准确地监测国土荒漠化面积,对政府决策整治防护有重要意义。  相似文献   

8.
准确了解我国海岸带红树林种类组成有助于红树林资源调查、保护和利用。本文基于广西海岸带2018—2020年共 14景GF-2多光谱影像,通过植被指数法和一阶微分法进行光谱特征数据重构,使用支持向量机分类方法,对广西海岸带红树林开展种间精细分类研究。结合现场数据以茅尾海为例,通过与原始数据和一阶微分的分类结果进行对比分析,来验证光谱特征数据重构对红树林种类识别的有效性。结果表明,基于光谱特征重构数据的分类精度最高,为91.55%,Kappa系数为0.8695,分别比原始数据和一阶微分提高了6.92%和11.17%。以此开展了广西整个海岸带红树林类型识别,结果表明,广西主要分布有7种真红树分别为桐花树、白骨壤、无瓣海桑、秋茄、红海榄、木榄、老鼠簕和一种盐沼草本植物茳芏,湿地植被总面积为7402.98 hm2,防城港市、钦州市和北海市红树林面积分别为1826.16、2496.18和3080.47 hm2,其中桐花树和白骨壤为广西红树林优势物种,分布面积最大,分别为3372.09 hm2和3445.17 hm2,二者占总面积的92.09%,其次为茳芏287.50 hm2占总面积3.88%,无瓣海桑与红海榄次之,面积分别为135.97 hm2和126.52 hm2,共占红树林总面积的3.55%,老鼠簕、木榄和秋茄面积极少,均不足20 hm2,三者相加不足红树林总面积的1%。北仑河口、山口和茅尾海3个红树林自然保护区的红树林总面积分别为1009.21、715.56和1546.62 hm2。本文基于高分数据的光谱特征数据重构方法开展红树林精细分类研究,可以为广西红树林管理、保护和重建提供技术和数据支撑。  相似文献   

9.
乌江流域是西南地区重要经济中心的生态和安全屏障,其上游地区长年面临水土流失和土地石漠化等问题,严重影响到当地和长江沿岸人民的生产生活。本文基于贵州省毕节地区2010年森林二类调查小班数据,运用综合能力蓄水法对乌江上游地区森林生态系统水源涵养量进行估算,分析了水源涵养能力的空间分异特征,并使用线性回归和相关分析法对森林水源涵养能力与林地海拔、坡度和土地退化类型之间的关系进行了深入探讨。结果表明:(1)2010年,研究区森林生态系统的水源涵养总量为563.05×106 m3,单位面积水源涵养量达774.73 t/hm2,水源涵养能力分布表现为东部地区自东北向西南逐渐减弱、西部地区强弱相间的碎片化分布特征;(2)随着林地海拔的升高,森林单位面积水源涵养量表现出显著的下降趋势(P<0.01),海拔平均每上升1000 m,单位水源涵养量相应减少90.56 t/hm2左右;(3)森林水源涵养能力与坡度呈显著的负相关(P<0.01),坡度平均每增加1°,单位水源涵养量相应减少2.44 t/hm2;(4)土地退化对森林水源涵养功能的影响较大,退化土地的森林水源涵养能力较非退化土地平均下降23.50%。正确认识森林生态系统的水源涵养功能及其空间差异,对了解当地森林生态系统现状,以及制订实施更有针对性、更高效的水资源可持续利用和生态环境恢复及建设等相关政策具有重要意义。  相似文献   

10.
闽江口湿地遥感时空演变应用分析   总被引:6,自引:0,他引:6  
将闽江口湿地动态变化度、湿地变化转移矩阵和景观生态学的空间格局模型相结合,横、纵向分析了1986- 1994年、1994-2000年两个时期闽江口湿地的动态演变模式。研究表明,在两个时期不同的社会政策和经济发展阶段,人类活动对闽江口湿地的干扰强度与对象不同,造成两个时期不同的湿地演变模式。在1986-1994年间景观类型动态变化,以水田面积的扩张为主导,在1994-2000年间景观类型动态变化突出表现为城乡建筑用地对水田、非湿地农业的占用。在1986-2000年间,湿地景观中,人工水域破碎度增加,破碎化速度提高,形状更加复杂化;水田破碎度和形状复杂度都由增加向减弱转变;天然水域破碎度减小,形状复杂程度由减少变为增加;滩地破碎度由减少变为增加,形状复杂化由增加转向减少。在中、小时间尺度范围内,人类活动是影响闽江口湿地演变的主要原因之一,特别是近10多年来社会经济的高速发展,城镇化进程的加速,人类活动成为影响闽江口湿地的最主要原因。  相似文献   

11.
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.  相似文献   

12.
1 INTRODUCTION The Ussuri / Wusuli River watershed is located in the southeast part of Heilongjiang Province of China, which joins remote regions of Russia. The watershed consists of approximately 26 000 000 ha, which is about two thirds of the watershed ecosystem in Russia, one  third in China. The Ussuri River forms part of the border between Russia and China, the shared border stretches more than 1100 km. Khanka/Xingkai Lake lies within both China and Russia. Its total area …  相似文献   

13.
The Yellow River Delta wetland is the youngest wetland ecosystem in China's warm temperate zone. To better understand how its landscape pattern has changed over time and the underlying factors responsible, this study analyzed the dynamic changes of wetlands using five Landsat series of images, namely MSS(Mulri Spectral Scanner), TM(Thematic Mapper), and OLI(Operational Land Imager) sensors in 1976, 1986, 1996, 2006, and 2016. Object-oriented classification and the combination of spatial and spectral features and both the Normalized Difference Vegetation Index(NDVI) and Normalized Difference Water Index(NDWI), as well as brightness characteristic indices, were used to classify the images in eCognition software. Landscape pattern changes in the Yellow River Delta over the past 40 years were then delineated using transition matrix and landscape index methods. Results show that: 1) from1976 to 2016, the total area of wetlands in the study area decreased from 2594.76 to 2491.79 km~2, while that of natural wetlands decreased by 954.03 km~2 whereas human-made wetlands increased by 851.06 km~2. 2) The transformation of natural wetlands was extensive: 31.34% of those covered by Suaeda heteropteras were transformed into reservoirs and ponds, and 24.71% with Phragmites australis coverage were transformed into dry farmland. Some human-made wetlands were transformed into non-wetlands types: 1.55% of reservoirs and ponds became construction land, and likewise 21.27% were transformed into dry farmland. 3) From 1976 to 2016, as the intensity of human activities increased, the number of landscape types in the study area continuously increased. Patches were scattered and more fragmented. The whole landscape became more complex. In short, over the past 40 years, the wetlands of the Yellow River Delta have been degraded, with the area of natural wetlands substantially reduced. Human activities were the dominant forces driving these changes in the Yellow River Delta.  相似文献   

14.
本文通过对湿地景观的时空动态发展过程其形成空间格局的分析,构建了基于ANN-CA的银川平原湿地景观时空模拟模型,并对湿地景观格局过程与主要驱动力因子间的响应关系进行了情景模拟。研究结果表明:年降水量对天然湿地中的河流湿地和湖泊湿地的驱动作用呈正相关关系,对水稻田和坑塘湿地的影响不显著;人口密度对人工湿地的驱动作用呈正相关,随着人口密度的增加,水稻田和坑塘向各个方向大面积蔓延,河流和湖泊等天然湿地的面积则逐渐减少;随着农业生产活动的加强、农业总产值的增加,河流和湖泊缓慢减少,水稻田和坑塘等人工湿地分布迅速扩张。  相似文献   

15.
湿地作为缓解气候变化的关键生态系统, 在碳捕获与碳封存方面发挥着不可替代的作用。湿地碳储量和影响因素的分析以及固碳潜力的预测, 对湿地生态保护与管理、国家"双碳"目标实现具有重要意义。应用ArcGIS10.8对《贵州省湿地保护发展规划》(以下简称规划)的3个时期(分别是: 1999-2009年; 2010-2018年; 2018年至今)湿地分布图采用遥感目视解译的方式进行矢量化并根据贵州省岩溶发育强度进行分区。采用生命带研究法与生物量估算法等对贵州省湿地面积和碳储量变化进行估算分析, 对重要湿地碳储量与单位面积碳储量进行估算并与全省湿地进行对比, 采用固碳潜力计算模型对贵州省重要湿地固碳潜力进行估算, 应用Origin软件对各相关影响因子进行数据分析。结果表明: ①贵州省湿地规划前期的面积为216 526.95 hm2, 规划中期面积为209 726.85 hm2、规划后期面积为255 440.53 hm2, 总体表现为先下降再升高, 总体面积增加38 913.58 hm2; ②贵州省湿地碳储量变化为: 规划前期为5.97×105 t, 规划后期为3.78×106 t, 是规划前期的6倍以上, 碳储量增加明显。其中, 贵州省重要湿地碳储量为3.24×106 t, 占全省湿地碳储量85.71%, 固碳潜力十分显著; ③贵州省重要湿地的固碳潜力为1.14×104 t C/a, 预计到2030和2060年, 湿地总固碳量分别达到7.99×106 t C和8.34×106 t C; ④温度、DIC浓度、有机碳含量与面积对贵州省重要湿地的碳储量影响较大, 重要湿地碳储量与DIC浓度、有机碳含量以及面积呈正相关, 而与温度呈负相关关系。对贵州省的湿地碳储量估算与碳中和潜力分析不仅可以了解贵州省湿地碳封存现状, 还可为区域湿地生态系统在"3060"双碳目标的贡献上提供理论参考。   相似文献   

16.
本文利用1986年Landsat TM、1994年Landsat TM、2000年Landsat ETM+、2005年CBERS-02 CCD、2009年ALOS AVNIR-2共5个时期的多平台遥感数据,采用分层分类和决策知识规则等方法,对福州海岸带湿地资源进行提取和分类;并分析了1986-2009年23年间福州海岸带湿地的时空分布和演化规律。结果表明:福州海岸带湿地的变化主要集中在1994-2005年间,1994年前和2005年后湿地变化都比较小;1986-2009年间,福州海岸带湿地面积总体呈下降趋势;天然湿地面积一直在减少,主要转化为水产养殖区等人工湿地和建设用地等非湿地类型;人工湿地2000年前呈下降趋势,2000年以后面积增长较快,其中水产养殖区面积一直稳步增长,主要由非湿地、水稻田和天然湿地转化而来。福州海岸带湿地的变化与区域政策调整、经济利益驱动和人口增长等因素相关,特别是与区域政策调整密切相关。  相似文献   

17.
ESTIMATION OF ECOLOGICAL SERVICE VALUES OF WETLANDS IN SHANGHAI, CHINA   总被引:12,自引:0,他引:12  
1IN TR O D U CTIO N Wetlandsprovidemany importantservicesto human societ,y butareatthesame timeecologicallsyensitiv andadaptivesystems.Thisexplainswhy inrecentyears much attentiohnasbeenpaidto theformulatioanndop- erationof sustainablmeanagement strategie…  相似文献   

18.
Wetlands of China cover an area of 63 million ha, among which, natural wetlands 25 million ha, including mires, shallow lakes, etc., artificial wetlands 38 million ha. Besides these, there are a lot of rivers and islands, stretching 18,000 km of coastal line and coastal zone below the tidal within the water depth of 6 m. Based on the climatic regional differences, biota similarity and biodiversity abundance, China’s wetlands can be divided into 9 main regions. Wetlands not only have huge functions to regulate mankind’s living environment, but also are the important and precious natural resources. For a long period, since the contradiction between population and resources, energy, grain is getting more and more obvious, China’s wetlands are facing to serious disturbances, such as large-scale reclamation, overhunting, industrial waste water pollution and species introducing. They have brought about the wetland quantity reducing and quality falling, furthermore have effects on sustainable development. For the special national conditions of China, higher population pressure, China should carry out wetland resource protection and rational utilization, not only protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号