首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little has been done in measurement and research of the flux of CH4 emission from paddy fields in Changchun area, Jilin Province, China before 1994. So the purpose of the study is to offer available regional data of CH4 emission flux and to discuss the factors which affect CH4 emission from paddy fields. Experimental paddy fields are chosen using TM pictures respectively in Xinlicheng (43°49′N, 125°20′E) of the Yitong River’s and in Wanchang (43°44′10″N, 125°53′11″E) of the Yinma River’s alluvial plain. The fluxes of CH4 emission from paddy fields are measured by the method of static chamber in Changchun area in 3 consecutive years. The research results show that the peak of CH4 emission from paddy fields occurs during the booting stage. The mean fluxes of CH4 emission are 7.056 mg/m(2 · h) and 0.489 mg/(m2 · h) in the paddy fields of flood and discontinuous irrigation respectively. The contrastive study holds that climate condition, the way of water management and fertilizer variation have significant influence on fluxes of CH4 emission from paddy fields. The difference of climatic conditions causes the interannual change of the flux of CH4 emission from paddy fields. In general, the flux of CH4 emission from paddy fields of flood irrigation is greater than that from paddy fields of discontinuous irrigation. To change the way of water management perhaps in an available way to reduce CH4 emission flux from paddy fields. Foundation item: Under the auspices of Jilin Commttee of Science and Technology (grant 963416 - 1), and Changchun Jingyuetan Remote Sensing Test Site of the Chinese Academy of Sciences (grant 9504). Biography: YAN Min-hua (1964 -), female, a native of Liaoning Province, master, associate professor. Her research interests include climate change, greenhouse gases and wetland climate.  相似文献   

2.
1990~2000年中国稻田甲烷排放变化模拟   总被引:3,自引:0,他引:3  
甲烷(CH4)是大气中重要的温室气体之一。研究我国稻田的甲烷排放年际变化,客观评估我国稻田CH4排放量,对于区域乃至全球大气CH4浓度的贡献具有积极意义。本文将一个比较成熟的稻田甲烷排放模型CH4MOD和G IS空间化数据库结合,模拟估计了中国大陆1990~2000年水稻生长季稻田甲烷排放的年际变化。模拟结果表明:从1990年到2000年,我国稻田甲烷排放量具有比较明显的年际波动,其中1993~1995年由于播种面积较少,甲烷排放为一个低谷,排放量约为5.37Tg;其他年份的排放量在5.93~6.22Tg之间。虽然1997年之后我国水稻播种面积比1993年之前少约1.84×106hm2,但两个时期的甲烷排放量却基本相等,这主要是由于1997年之后单位面积稻田甲烷的排放也较1993年之前高的缘故。从空间格局方面讲,我国稻田甲烷排放的高值区主要分布在湖南、湖北、江西、广东、广西、四川、江苏和安徽,东北地区稻田甲烷排放在20世纪90年代有逐年增加的趋势。  相似文献   

3.
The objective of this study is to quantify the values of greenhouse gases (GHGs) exchange in carbon equivalents of marshes and paddy fields in the Sanjiang Plain, Heilongjiang Province, China. We obtained the GHGs exchange values based on comparable price by calculating the carbon sequestration values and the GHGs emission values of marshes and paddy fields respectively in four periods of 1982, 1995, 2000 and 2005. It is noted that the GHGs emission values are always negative. In this study, the marshes areas decreased from 1438977.0 to 775,132.2ha and the paddy fields areas increased from 417195.8 to 934205.0ha. The values of GHGs exchange of marshes varied from 135877.156×106 to 136882.534×106 yuan (RMB) and those of paddy fields varied from 1006.256×106 to 2767.645×106 yuan. The GHGs exchange values of marshes decreased from 1982 to 2005 on the whole, reversely, those of paddy fields increased, but those in 2005 were lower than those in 2000. In different periods, the GHGs exchange values were always higher in marshes than in paddy fields. The contribution rate of GHGs exchange values per unit area of marshes was also very high in different periods, and the maximum was up to 98.35% in 2005. As far as the whole wetland ecosystem (including marshes and paddy fields), assuming a linear change in GHGs exchange values, it represented a cumulative increase of 20926.757×106 yuan from 1982 to 2005. By adding GHGs exchange values increased during those four periods, we obtained a cumulative net increase values of GHGs exchange of wetland ecosystem of 18200.860×106 yuan. The results will be useful for understanding the indirect services provided by marshes and paddy fields.  相似文献   

4.
The regularity of CH4 emission from marshland in the Sanjiang Plain was studied by sampling in the open field and analyzing under laboratory condition, the annual emission amount is also estimated. By Grey Relatively Analysis we know that the soil temperature in the 10-cm depth of grass-root layer is close related with CH4 emission. CH4 emission has different kinds of diurnal emission modes:before-dawn maximum mode, night maximum mode and irregular fluctuation mode. The seasonal variation trend of CH4 emission rates is going up steadily from May to August and dropping down from September, the maximum lies behind the maximum of temperature. CH4 emission rates of different marshland types are different, the CH4 emission rate of Glyceriaspiculosa — Carex marshland is always higher than that of Carex lasiocarpa marshland. The paper also studies the difference of CH4 emission rates in different managing modes and analyzes the emission rates between China and U. S. A. The result shows: the average value of CH4 emission rate is 17.26mg/(m2·h), the annual amount of CH4 emission is about 0.75Tg. Supported by National Natural Sciences Foundation of China, and thank the Ecological Test Station of Mires and Wetlands in the Sanjiang Plain, the Chinese Academy of Sciences.  相似文献   

5.
REGULARITYANDESTIMATIONOFMETHANEEMISSIONFROMMARSHLANDINTHESANJIANGPLAIN①CuiBaoshan(崔保山)MaXuehui(马学慧)ChangchunInstituteofGeogr...  相似文献   

6.
IMRODUcTlONThe577km1ongMinjiangRiver,thelongestriverinFujianProvinceofChina,hasa6O992km2drainagebasin.Thewaterdischargeislarge(meaninyearsis198Om/s).TheannualrunofffromtheMinjiangRiveris5.84xlOlom,WhichismorethanthatoftheHuangheRiver,andranksthirdintheannualrunoffofmaorChineseriversWhang,l994).SimdentnutrientSfromtheMinjiangRivertotheseaisanarisa-ryconditionforthefonnationandcontinuingexistenceoftheMindongFisheryGroundandtheMihahongFisheryGround.Inthendingareaofriverwaterwithseaw…  相似文献   

7.
I.INTRODUCTION“Agenda21”recognizestheimportanceoflandbasedsourcepolutantstomarinepolution.Coastalwaterisofgreatsignificance...  相似文献   

8.
The number concentrations in the radius range of 0.06 – 5 μm of aerosol particles and meteorological parameters were measured on board during a cruise in the South China Sea from August 25 to October 12, 2012. Effective fluxes in the reference height of 10 m were estimated by steady state dry deposition method based on the observed data, and the influences of different air masses on flux were discussed in this paper. The number size distribution was characterized by a bimodal mode, with the average total number concentration of(1.50 ± 0.76)×10~3 cm~(-3). The two mode radii were 0.099 μm and 0.886 μm, both of which were within the scope of accumulation mode. A typical daily average size distribution was compared with that measured in the Bay of Bengal. In the whole radius range, the number concentrations were in agreement with each other; the modes were more distinct in this study than that abtained in the Bay of Bengal. The size distribution of the fluxes was fitted with the sum of log-normal and power-law distribution. The impact of different air masses was mainly on flux magnitude, rather than the shape of spectral distribution. A semiempirical source function that is applicable in the radius range of 0.06 μmr_(80)0.3 μm with the wind speed varying from 1.00 m s~(-1) to 10.00 m s~(-1) was derived.  相似文献   

9.
The influence of land-based source pollutants to marine ecological environment is principally in coastal or enclosed sea wates. Flux of land-based source pollutants into the sea will be effected due to social and economic development in the Tumen River basin. Pollutant type and primary pollution factor of the Tumen River in Northeast China is described by weighted coefficient method in this paper. The results indicate that the river is organic pollution type and primary pollution factor is COD. Fresh water fraction proves that the estuary is not affected by tide cycle. COD annual flux entering the Sea of Japan calculated by zero-dimension model in 1993 was 90.50 × 103 tons. It is estimated with emission coefficient method that the COD will be 176.4 × 103 and 458.6 × 103 tons for the years of 2000 and 2010 respectively. This work is sponored by the Open Fund of State Key Laboratory on Environmental Aquatic Chemistry.  相似文献   

10.
1 Introduction Vegetation is an important component of terrestrial eco- system, it plays an important role in global matter and energy cycle, carbon balance and climate change. CO2 has effects on global warming, photosynthesis function, Net Primary Productivity (NPP) and earth environmental condition. NPP is one of the important biophysical variables of vegetation activity, and is a beginning link of biogeochemical carbon cycle. Vegetation absorbs CO2 from atmosphere through photosynthesi…  相似文献   

11.
The South China Sea water can be divided according to depth into three boxes by the pycnoclineand a sill.Using a box model with matter balance,the net seawater fluxes were calculated to be317.9×10~4 m~3/s in box Ⅰ for the upper homogeneous layer outflowing to the adjoining oceans;67×10~4 m~3/s in box Ⅲ for the water entering the basin;240×10~4 m~3/s in box Ⅱ for water entering theSouth China Sea.The upward speed of basin water was calculated to be 8.4×10~(-5) cm/s and that ofseawater flowing up along the pycnocline was calculated to be 8.9×10~(-5) cm/s.  相似文献   

12.
The International Eq一lation of State of Seawater,1980 and the PraeticalSalinity Scale,1978 have been adoPted by theUNESCO江CES沼COR八APSOJoint Panel ono‘eanogral,hie Tables and Standards(JPOTS),and endorsed bythese organizati6ns(Miller‘〕and Poisson,1981;Uneseo,1981).Th已new equa-tion and the Praetieal Salinity Seale are to be used for all values Published fromJan .1,1982 .The new equation 15 aeeurate for use in all oeeanie surfaee waters,but eannot be aeeurately aPPlied to…  相似文献   

13.
The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (NO), 21 (N1) and 42 (N2) g N/(m2.yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CHa/(m2.h) and 7.79 mg CH4/(m2-h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of NI and N2 treat- ments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of NO treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and nega- tively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.  相似文献   

14.
Crop residue incorporation has been widely accepted as a way to increase soil carbon (C) sequestration and sustain soil fertility in agroecosystems. However, effect of crop residue incorporation on greenhouse gas (GHG) emissions in rice paddy soils remains uncertain. A field experiment was conducted to quantify emissions of CH4 and N2O and soil heterotrophic respiration (RH) from a paddy rice field under five different crop residue treatments (i.e., 150 kg N ha-1 of synthetic N fertilizer application only [NF], 150 kg N ha-1 of synthetic N fertilizer plus 5.3 Mg ha-1 wheat residue [NF-WR1], 150 kg N ha-1 of synthetic N fertilizer plus 10.6 Mg ha-1 wheat residue [NF-WR2], 75 kg N ha-1 of synthetic N fertilizer plus 10.6 Mg ha-1 wheat residue [50%NF-WR2] and 150 kg N ha-1 of synthetic N fertilizer plus 21.2 Mg ha-1 wheat residue [NF-WR3]) in southwest China. Our results showed that crop residue incorporation treatments (NF-WR1, NF-WR2, 50%NF-WR2, NF-WR3) significantly increased CH4 emissions by at least 60%, but N2O emissions were not enhanced and even suppressed by 25% in the NF-WR3 treatment as compared to the NF treatment. Soil RH emissions were comparable among experimental treatments, while crop residue incorporation treatments significantly increased soil carbon sequestrations relative to the NF treatment. Overall, CH4 emissions dominated total global warming potentials (GWP) across all experimental treatments. The average yieldscaled GWPs for the NF and NF-WR1 treatments were significantly lower than for the NF-WR2, 50%NFWR2 and NF-WR3 treatments. Given the comparable yield-scaled GWPs between the NF and NF-WR1 treatments, the NF-WR1 treatment could gain net carbon sequestration as compared with the NF treatment with net soil carbon loss. Our findings suggest that the NF-WR1 treatment should be an effective option to sustain rice production while mitigating GHG emissions from the rice field in China.  相似文献   

15.
Partial pressure of CO2 (pCO2) was investigated in the Changjiang (Yangtze River) Estuary, Hangzhou Bay and their adjacent areas during a cruise in August 2004, China. The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago. The pCO2 varied from 168 to 2 264 μatm, which fell in the low range compared with those of other estuaries in the world. The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m^-2 d^-1 in average of 24.4 ± 16.5 mmol m^-2 d^-1. Although the area studied was estimated only 2 × 10^4 km^2, it emitted (5.9 ± 4.0) × 10^3 tons of carbon to the atmosphere every day. The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.  相似文献   

16.
When cultured under certain environmental conditions (25°C, light intensity 80 μmol/m2·s, LD 12/12, in enriched seawater medium with 7×10−4 mol/L NO3−N, 1.56×10−4 mol/L, PO4−P and supplements of other elements like Mn, Fe, I, etc.), male and female gametophytes ofU. pinnatifida kept growing vegetatively and propagated fast at average daily fresh weight increase rate of about 20%. The empirical formulaG m=G o·3m was established to estimate the output of vegetative gametophytes. Vigorous vegetative gametophyte cells began to form reproductive structures (oogonium and spermatangium, when the temperature was lower than 25°C and other environmental factors were kept optimal. The sufficient supply of gametophyte cells provided enough seeds for raisingUndaria sporelings on production scale. Controlled cross-breeding experiments using selected male and female gametophyte clones which increase their cell number by mitosis instead of meiosis were also carried out in vitro. Juvenile sporophytes from the cross-breeding had almost the same length and width increase rates as those of the control. The fact that vegetative gametophytes can be purposely selected, propagated quickly, cross-bred, with the resulting sporophytes having almost the same characteristics leads to a new way to select desiredUndaria strains for long time use without losing the desired economic characteristics. Contribution No. 2696 from the Institute of Oceanology, Chinese Academy of Sciences. Supported by National Natural Science Foundation of China.  相似文献   

17.
Energy crops are a basic material in the bioenergy industry, and they can also mitigate carbon emissions and have environmental benefits when planted on marginal lands. The aim of this study was to evaluate the potential productivity of energy crops on marginal lands in China. A mechanistic model, combined with energy crop and land use characteristics, and meteorological and soil parameters, was used to simulate the potential productivity of energy crops. There were three main results. 1) The total marginal land in China was determined to be 104.78 × 10~6 ha. The 400-mm precipitation boundary line, which is the dividing line between the semi-humid and semi-arid zones in China, also divided the marginal land into shrub land and sparse forest land in the southeast and bare land, bare rock land, and saline alkali land in the northeast. 2) The total area of the marginal land suitable for planting energy crops was determined to be 55.82 × 10~6 ha, with Xanthoceras sorbifolia and Cerasus humilis mainly grown in the northern China, Jatropha curcas and Cornus wilsoniana mainly grown in the southwest and southeast, and Pistacia chinensis mainly grown in the central area, while also having a northeast-southwest zonal distribution. 3) Taking the highest yield in overlapping areas, the potential productivity of target energy crops was determined to be 32.63 × 10~6 t/yr. Without considering the overlapping areas, the potential productivity was 6.81 × 10~6 t/yr from X. sorbifolia, 8.86 × 10~6 t/yr from C. humilis, 7.18 × 10~6 t/yr from J. curcas, 9.55 × 10~6 t/yr from P. chinensis, and 7.78 × 10~6 t/yr from C. wilsoniana.  相似文献   

18.
GEOGRAPHIC ENVIRONMENT CHANGE AND FLOOD CATASTROPHE IN HUAIHE RIVER BASIN DURING LAST 2000 YEARSYangDayuan(杨达源)(DepartmentofG...  相似文献   

19.
Zhang  Anqi  Liu  Honghan  Li  Chenhong  Chen  Changping  Liang  Junrong  Sun  Lin  Gao  Yahui 《中国海洋湖沼学报》2022,40(6):2401-2415

Toxic and harmful algal blooms are usually more frequent in mariculture areas due to the abundant trophic conditions. To investigate the relationship between toxic and harmful microalgae and environmental factors, we set up 12 stations near three mariculture regions (Gouqi Island, Sandu Bay, and Dongshan Bay) in the East China Sea. We collected samples from all four seasons starting from May 2020 to March 2021. We identified 199 species belonging to 70 genera, of which 38 species were toxic and harmful, including 24 species of Dinophyceae, 13 species of Bacillariophyceae, and 1 species of Raphidophyceae. The species composition of toxic and harmful microalgae showed a predominance of diatoms in the summer (August), and dinoflagellates in the spring (May), autumn (November), and winter (March). The cell densities of toxic and harmful microalgae were higher in summer (with an average value of 15.34×103 cells/L) than in other seasons, 3.53×103 cells/L in spring, 1.82×103 cells/L in winter, and 1.0×103 cells/L in autumn. Pseudonitzschia pungens, Prorocentrum minimum, Paralia sulcata, and Prorocentrum micans were the dominant species and were available at all 12 stations in the three mariculture areas. We selected 10 toxic and harmful microalgal species with frequency >6 at the survey stations for the redundancy analysis (RDA), and the results show that NO ?3 , water temperature (WT), pH, DO, and NO ?2 were the main factors on distribution of toxic and harmful microalgae. We concluded that the rich nutrient conditions in the East China Sea mariculture areas increased the potential for the risk of toxic and harmful microalgal bloom outbreaks.

  相似文献   

20.
Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km2·a) and 61.58t/(km2·a) by deducting the HCO 3 derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84×103mol/km2 and 452.46×103mol/km2annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51×109mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins. Foundation item: Under the auspices of Ministry of Science and Technology Project of China (No. G1999043075) Biography: LI Jing-ying (1974-), female, a native of Xinye of Henan Province, Ph.D., associate professor, specialized in environmental geochemistry. E-mail: wxxljy2001@public.qd.sd.cn  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号