首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
中国作为世界第一大发展中国家,近年来城镇化发展迅速,大量自然地表转化为人工地表,从而引起了一系列环境问题,其中以城市热岛问题最为显著。因此如何缓解因城市化进程的加快引起的城市热岛效应已成为热门研究方向。为精确分析城市空间格局对热集聚的影响,本研究利用2000年5月4日的Landsat ETM+和2016年7月27日获取的Landsat OLI两期遥感影像,获取福州市的土地覆盖信息并进行精度验证。在地表温度(Land Surface Temperature, LST)反演基础上通过热点分析(Getis-Ord Gi*),并结合不透水面(Impervious Surface Area, ISA)信息来研究城市化进程中福州市16 年来 LST的变化特性,空间集聚特性及其产生的尺度效应。热点分析结果显示:① 通过分析福州市内各地和热点中心的距离与LST的关系可较好地反映空间热聚集。2000 年在距热点中心0.97、1.03、0.95 km范围内热聚集明显;2016 年则增长到分别在距热点中心半径1.89、2.01、2.10、2.05、2.13 km范围内热集聚显著且热点区数量也从3 个增加至5 个。热集聚区(热点区和较热区)总面积在此期间从15.7%增至47.3%;② 由于热点图中的热点区和冷点区的形成不单取决于LST的高低,因此热点分析与空间自相关分析方法相比,能更直观地分析土地覆盖变化对LST的影响,了解城市内部热强度变化的细节。本研究采用的热点分析方法可用于城市环境保护与规划,将来还可作为城市土地规划与热环境影响的分析依据。同时可利用热点分析图模拟城市微气候,估算城市绿地降温程度等。此外,未来还可基于此进一步探讨更多时相以及不同城市的对比分析,特别是对不同城市类型如带状城市,多中心城市及中心城市等的研究。  相似文献   

2.
福建省地表温度与植被覆盖度的相关性分析   总被引:1,自引:0,他引:1  
地表温度(Land surface Tenperature, LST)和植被覆盖度(Fractional Vegetation Coverage, FVC)是生态环境变化的重要指标因子,研究两者的时空变化及相互关系对评价区域生态环境建设、改善区域生态环境具有重要意义。本文以福建省为研究区域,利用2001-2015年MODIS 11A2 LST和13Q1 NDVI数据,在时序数据重构的基础上对福建省LST时空变化及LST与FVC的相互关系进行分析。结果表明:①2001-2015年福建省LST总体呈轻微下降趋势,尤其是2010年之后其LST明显降低。LSTFVC的空间分布具有较好的负相关一致性:在FVC较高的区域,LST值较低;在FVC较低的区域,LST较高。② LSTFVCDEM和纬度均成负相关关系,且负相关性在一年之中随着月份的变化而呈规律性增加或降低。夏季FVC对LST的负相关性最大为0.7,冬季FVC对LST的负相关性降低为0.4。③LST随着FVC增加而降低的趋势呈现分段线性关系,存在“FVC拐点”。“FVC拐点”前后随着FVC增加LST的降低速率在夏季 “先慢后快”,而在冬季则“先快后慢”。春秋两季,LST随着FVC增加而降低的速率在“FVC拐点”前后差异变小。在夏季,当FVC大于0.4时,FVC每增加0.1可降低LST约0.77 °C,降温效果大约是FVC小于0.4时的2倍。因此如果要有效地降低夏季地表高温,要使地表植被覆盖大于40%,才能较好的发挥植被的降温的作用。④在1-8月份,FVCLST的负相关作用存在滞后性,FVC变化对滞后一个月的LST时空分布影响更大。研究成果对福建省生态环境建设与评估具有一定的意义,对于发挥植被对区域高温抑制作用提供了重要的参考依据。  相似文献   

3.
本文以贵阳市为研究对象,研究了地表覆盖组分及植被多样性对地表温度的影响。首先基于Landsat8 OLI多时相影像数据在GEE平台上实现了研究区域地表覆盖精细分类;然后结合不同季节8天合成的MODIS温度产品数据,利用时空统计分析、相关分析等方法分析了研究区不同地表覆盖类型地表温度时空分布特征,地表温度与不同地表覆盖组分、地表覆盖多样性和植被覆盖多样性的相关性。结果表明:贵阳市建成区主要分布有常绿阔叶林、常绿针叶林等植被,常绿阔叶林在不同季节对地表温度的降温效应明显,而不透水面对地表温度具有明显的增温效应,尤其以夏季最为显著;地表覆盖多样性与地表温度之间具有较强相关性,其中植被覆盖多样性较植被覆盖率对地表温度的影响更为显著,而不透水面的增加会明显降低植被多样性的影响。因此,要发挥城市绿地对城市温度和热岛效应的调节作用,建议可以适当增加常绿阔叶林的绿化面积,同时在空间上要提升植被多样性水平,能够较大程度改善城市热环境。  相似文献   

4.
为探究中国北方中温带,特别是东北寒区快速城市化地区城乡不透水增长格局及地表温度的响应特征,本文以哈尔滨市为例,基于国家资源环境遥感时空信息平台土地利用/覆盖变化(LUCC)数据集解译的2001年与2015年城乡建设用地和Landsat 7/8数字遥感影像,结合植被-不透水面-土壤(V-I-S)端元选取和完全约束最小二乘混合像元线性分解模型进行了不透水面提取(分辨率15 m×15 m),并运用单窗算法进行了夏季地表温度遥感反演。结果表明:2001-2015年建设用地扩张259.05 km2,不透水面上升163.96 km2,城市与乡村不透水面占各自建设用地的比例由2001年的43.92%、21.35%变化为2015年的49.14%、34.27%,城乡比例差由22.57%缩减至14.87%,单位建设用地内乡村不透水面增量较高;2001-2015年城区以低温区、中温区、高温区为主,对不透水面扩张的响应剧烈,而乡村以低温区和中温区为主,低温区和高温区响应剧烈;地表温度与不透水面具有显著正相关,在低、中、高不透水密度区分别升温1.16o、1.45和1.79 ℃,相同不透水面盖度下城市升温高于乡村。总体而言,研究区不透水面大幅扩张,温度分区变化剧烈,地表温度随不透水面增加升温效果明显。  相似文献   

5.
基于QuickBird高分辨率影像、LandsatTM影像及夜间灯光数据,设计了集成CART(Classification and Regression Tree,)算法和多源遥感数据估算亚像元级不透水地表盖度的技术方案,采取适用于典型温带半干旱地区的ISP(Impervious Surface Percentage )提取方法,提取2001年和2011年北京城区不透水地表盖度,并将不透水地表盖度分为3类,ISP为10%~60%的区域为低密度区,60%~80%的区域为中密度区,大于80%的区域为高密度区。同时采用单窗算法反演2001年和2011年地表温度,对2001-2011年北京六环以内城区不同环路区域ISP发展趋势,以及其与地表温度的相关性进行分析。结果表明:(1)北京城区的不透水地表盖度变化主要集中在低密度区域,与之相比,中密度区域和高密度区域不透水地表盖度变化不大。2001-2011年来北京五环以内区域由于城建区较多,整体不透水地表变化并不明显,主要变化区域集中在五环至六环以内区域,其中低密度区增长明显,中密度区和高密度区主要增长集中在东部,可以看出,近年来五环至六环以内区域发展迅速,城建区范围不断扩大。(2)相较于2001年,2011年北京市中心地表温度明显上升,高温区聚集程度更为明显。其中四环以内地表温度与周边区域地表温度相比,温差明显增大。(3)通过对比2001年和2011年各密度区平均地表温度发现,相较于2001年,2011年北京市六环以内城区各密度区之间的地表温度差异更大,城市热岛效应更为明显。(4)2001年和2011年北京城区各环路区域内不透水地表盖度与地表温度均呈正相关。四环至六环区域,地表温度随不透水地表盖度变化的趋势相近。ISP在10%~20%的区域,地表温度随不透水地表盖度增高而上升的速率明显高于其他区域,ISP大于20%的区域地表温度上升速率下降,且趋于一致。  相似文献   

6.
基于DEM修正的MODIS地表温度产品空间插值   总被引:1,自引:0,他引:1  
地表温度是资源环境、气候变化、陆地生态系统等科学研究的重要参数之一。MODIS LST(Land Surface Temperature, LST)产品是地表温度相关研究的重要数据源。而现有MODIS LST产品均存在云覆盖区域,因此云覆盖区域地表温度估计已成为热红外遥感的前沿性研究难题。为解决MODIS LST产品云遮挡区域地表温度信息缺失,以秦岭地区为研究区,选用2001-2017年的MOD11A2数据,在传统的反距离权重(IDW)、规则样条函数(SPLINE)、普通克里金(OK)、趋势面(TREND)空间插值方法中引入高程因子,通过反复试验形成基于DEM修正的MODIS LST空间插值方法。分析空间插值结果表明: ① 空间插值精度由高到低为:OK>SPLINE>IDW>TREND,基于DEM修正后精度分别提高了约0.38、0.31、0.32和0.78℃; ② 空间插值结果的精度呈现季节差异,夏季6、7、8月的精度较高,1月的精度最低;③ 插值精度与云区的范围存在一定的关系,当云覆盖区域<1.1 km2时,DEM+OK方法的插值误差<0.55 ℃,当云覆盖区域<3.1 km2,插值误差<1 ℃;DEM+SPLINE方法在云覆盖区域<2.7 km2时,插值误差<0.55 ℃,云覆盖区域<10.4 km2,插值误差<1℃;当云覆盖为1.1~2.7 km2时,DEM+SPLINE方法的插值精度高于DEM+OK方法。  相似文献   

7.
不透水面是城市区域中一种典型的土地覆盖类型,是衡量城市环境质量和城市化水平的重要标志之一。与传统基于像元级的遥感研究方法相比,不透水面百分比(Impervious Surface Percent,ISP)的估算可以进入像元内部,获得更准确的城市信息。本文应用Cubist模型树,对Landsat TM的原始波段变量(除热红外波段),建立ISP估算的基础模型(Base Cubist-ISP)。通过基于模型树的集成学习优化算法和加入相邻时相影像的波段变量中值,以削弱噪声的影响。然后,优选热红外波段和各种衍生变量,并进行属性精简,继而应用集成学习算法得到的参数和精简后的变量建立ISP估算的优化模型(Optimal Cubist-ISP)。对广东省广州市海珠区的实验结果表明,Optimal Cubist-ISP模型估算不透水面的整体均方根误差(RMSE)为12.98%,决定系数(R2)为0.90,精度明显优于Base Cubist-ISP模型,RMSE降低约5.03%,ISP在透水面区域被高估和高密度不透水面区域被低估的现象得到改善。本文提出的基于Cubist模型树建立ISP遥感估算的模型及优化方法可以适用于城市区ISP的提取。  相似文献   

8.
随着城市化进程的加快,如何及时、精确地对城市环境的变化做出评价,进而制定出合理的发展方案,对城市可持续发展至关重要。本文综合利用卫星遥感获取的PM2.5浓度数据、地表温度数据(Land Surface Temperature,LST)、植被指数数据(Normalized Difference Vegetation Index,NDVI)及城市用地辅助信息数据,基于综合评价指标,分析海上丝绸之路沿线12个超大城市地区2000-2013年环境质量的动态变化。研究结果表明,2000-2013年,海上丝绸之路沿线约75%的超大城市呈现出不同程度的环境恶化现象。12个超大城市用地环境恶化及逐步恶化面积占研究区域总面积的31.33%(4732.39 km2)。2000-2013年,城市扩张用地恶化和逐步恶化面积约占总扩张用地的29.48%(3765.83 km2)。平均地表温度的上升、植被覆盖度的急剧下降及PM2.5浓度的增加均对海上丝绸之路沿线超大城市环境质量变化产生影响。其中,空气中PM2.5浓度的大幅度增加是2000-2013年海上丝绸之路沿线超大城市扩张用地环境退化的主要原因。  相似文献   

9.
武汉市夏季城市热岛与不透水面增温强度时空分布   总被引:1,自引:0,他引:1  
城市化的不断发展使自然地表不断被不透水面所取代,城市地表温度高于乡村,形成了显著的热岛效应。城市热岛给城市生态发展与人类健康带来了严重的负面影响,对其空间模式与背后形成机制的研究意义重大。本文以武汉市为例,基于2001、2007和2016年夏季Landsat系列影像使用辐射传导方程法反演了城市地表温度,并采用MOD11A1数据进行了验证;同时,计算了不同时期的城市温度等级和热岛比例指数,分析了城市热岛的时空变化。此外,为了探究热岛效应形成的主要原因,即不透水面与热环境的关系,全局角度使用多元线性回归分析对比了其增温效果与植被水体降温效果的强弱,空间局部角度采用地理加权回归结合地形数据得到了其增温强度的时空变化。结果表明:① 辐射传导方程法适用于实验中研究区的反演;武汉市城市热岛比例指数先增后减,但温度等级高的地区仍在不断扩张;② 多元线性回归可以准确地反映不同地表覆盖对地表温度的影响,R2值为0.910,总体上武汉市不透水面的增温效果强于植被的降温效果,并弱于水体的降温效果; ③ 2001-2016年不透水面增温强度较高区域的分布呈现“单中心”到“多中心”的变化趋势,由单一集中于中心城区变为了分散集中于三环线附近的汉阳沌口工业区、青山工业区、阳逻开发区和东西湖区等地区。综上所述,武汉市夏季热环境问题仍然较为严重,城市外部地区的不透水面增温强度正在逐渐增大,规划治理应当给予这些地区更多的关注。  相似文献   

10.
以南京市为研究区域,基于Landsat系列影像,采用单窗算法反演南京市2000—2017年的地表温度.通过地表温度均值标准差法划分城市热岛等级,分析南京市城市热岛时空演变特征,并基于归一化植被指数(NDVI)和归一化建筑指数(NDBI),分析南京市城市热岛和植被覆盖及不透水面的关系.研究结果表明,南京市2000—2017年城市热岛现象明显且有逐渐增长趋势;南京市城市热岛与植被覆盖、城市不透水面表现出较强的空间一致性;南京市城市热岛与植被覆盖和不透水面分别呈现负相关和正相关关系.研究为南京市城市环境管理与城市合理规划提供了一定的理论依据与参考.  相似文献   

11.
福州市城市不透水面景观指数与城市热环境关系分析   总被引:1,自引:0,他引:1  
城市化致使城市环境问题的产生,城市热环境问题就是其中之一。本文从不透水面方面研究对城市热环境的影响。根据福州市1989年和2001年LandsatTM/ETM+遥感影像数据,利用线性光谱分解法提取两时相不透水面信息,并离散化分级为中低、中、中高、高密度区4个区域,分别计算这4个区域的地表温度(LST)、归一化植被指数(NDVI),并进行相关性分析;根据阈值法和范围法分别计算不透水面的PD、AI、LPI等景观指数,结果表明:两时段内不透水面的面积有所增加,在高密度区增加明显;不透水面与地表温度的呈正相关,相关系数分别为0.66和0.71;不透水面景观指数对FISA敏感,景观指数整体的变化趋势与地表温度的变化趋势相一致,FISA值越大,温度越高,且各斑块的形状越来越复杂,空间的连续性越强;聚集度越高,人类活动也越强。  相似文献   

12.
不透水面作为反映城市发展程度和表征城市生态环境的重要指标,在城市化研究中成为重要的数据源。当前,不透水面信息的获取通常基于遥感数据来开展,包括不同分辨率的遥感数据。这些遥感数据在高精度提取城市不透水面的能力具有较大的差异,会因尺度不同而带来提取精度的偏差。因此,理解不同遥感数据源在不透水面提取上的差异尤为重要。本文利用Landsat/OLI光谱数据和VIIRS/DNB夜间灯光数据分别采用线性光谱混合分析法和大尺度不透水面指数法提取珠江三角洲研究区的不透水面信息,并从不透水面总体精度、不同密度精度对比分析2类数据源提取不透水面的差异。结果表明:① Landsat/OLI和VIIRS/DNB两者提取不透水面的总体精度差异不大,Landsat/OLI提取不透水面的精度总体上略高于VIIRS/DNB。2种数据提取不透水面的均方根误差RMSE分别是0.18和0.21,系统误差SE分别是0.12和0.13,决定系数R 2分别是0.76和0.67。② Landsat/OLI和VIIRS/DNB数据对不同密度不透水面分布区域的提取能力不同:VIIRS/DNB在低密度不透水面区域提取精度高于Landsat/OLI;而Landsat/OLI在中、高密度不透水面区域提取精度均高于VIIRS/DNB。通过2种数据提取精度差异的对比,以期为不同密度的不透水面分布区域提取找到最佳尺度的数据源,提高不透水面提取的效率和精度。  相似文献   

13.
DisTrad(Disaggregation procedure for radiometric surface temperature)模型是常用于遥感地表温度空间分辨率提升的主要模型之一。DisTrad模型常面向空间范围有限、地形相对平坦的研究区域,且常选用植被参数(如植被指数或植被覆盖度等)作为关键参数。然而在空间范围较大、地形起伏地区,地表温度的空间变异可能无法完全通过植被参数解释。本研究选取四川盆地及毗邻地区为研究区,通过模拟数据研究DisTrad模型在地形起伏区地表温度空间分辨率提升中的适用性。数字高程模型(Digital Elevation Model,DEM)、归一化差值植被指数(Normalized Difference Vegetation Index,NDVI)等参数,采用滑动窗口逐步回归,将空间分辨率为6km的地表温度提升至空间分辨率为1km。研究结果表明,改进的模型在平原及海拔较低的高原地区提升获得的地表温度空间分辨率具有较高精度,均方根误差(Root Mean Square Error,RMSE)为0.5K左右;在地形起伏较大的地区,RMSE为4K,验证了改进的模型提升的可行性。  相似文献   

14.
地表组分温度比像元混合温度具有更强的物理意义和实用价值,是定量遥感反演的一个重要研究方向。本文以马尔可夫链和最大后验准则地表温度尺度转换方法,结合静止气象卫星数据高时间分辨率的特点,通过模拟静止气象卫星数据地表组分温度反演进行分析和验证。在研究过程中,地面被简化为由植被和土壤两组分组成,同时假设邻近像元的植被和土壤组分温度相同。鉴此,本文通过模拟构建20×20像元大小的静止气象卫星混合像元图像,并对各像元各时刻温度添加均值为0标准差为2K的随机误差,最终应用所提算法估算各像元各时刻的植被和土壤组分温度大小。精度分析结果表明,该算法能够较为精确地反演植被和土壤组分温度,且误差基本控制在2K以内。此外,本文还进一步讨论了算法的适用性及其对混合像元温度误差、植被覆盖度误差,以及邻近像元植被覆盖度变化范围的敏感度。分析结果再次证明,该方法对混合像元温度误差和植被覆盖度误差都具有较低的敏感性,在最大温度误差条件(均值为1.8K,标准差为5K)和最大植被覆盖度误差(均值为0.18,标准差为0.2)的条件下,各组分温度的估算精度分别能控制在3K和2K以内,满足精度要求。但是,由于组分温度初值的确定方法,对所计算窗口内植被覆盖度变化范围有较强的敏感性,反演结果与植被覆盖度变化范围相关,要求窗口内植被覆盖度变化范围足够大才能满足初值估算的精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号