首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The high Zoige Basin (Ruoergai Plateau) on the eastern Tibetan Plateau is a fault depression formed during intensive uplifting of the Tibetan Plateau. The wetland is globally important in biodiversity and is composed of marshes, bogs, fens, wet meadows and shallow water interspersed with low hills and sub-alpine meadows. Most of the Zoige wetlands have long been one of the most important grazing lands in China. Recent rangeland policy has allowed grazing, and usable wetland areas have been being legally allocated to individuals or groups of households on a long-term lease basis. Privatizafion of the wetland has impacted the Zoige wetlands in aspects of hydrologic condition, landscape and biodiversity. The uneven spatial distribution of water resources onprivatelands has led to the practice of extracting ground water, which has decreased the perched water table in Zoige. Fencing off the rangelands and grazing on expanding sand dunes have affected landscapes. Variation in the water table has led to the changes in vegetation diversity, resulting in the changes in wildlife and aquatic diversities and ecosystem processes. Making use all year round of the pasture that was previously grazed only in summer has shrunk the daily activity space of wildlife, and the newly erected fences blocked the movement of wild animals looking for food in the snow to lower and open areas. To maintain the favorable conditions of the Zoige wetland ecosystem, the author suggests that, in addition to biophysical research and implementation of conservation practices, there is an immediate need to initiate an integrated management program, increase public awareness of wetland functions and provide better training for the local conservation staff.  相似文献   

2.
The alpine wetlands in QTP(Qinghai-Tibetan Plateau) have been profoundly impacted along with global climate changes. We employ satellite datasets and climate data to explore the relationships between alpine wetlands and climate changes based on remote sensing data. Results show that: 1) the wetland NDVI(Normalized Difference Vegetation Index) and GPP(Gross Primary Production) were more sensitive to air temperature than to precipitation rate. The wetland ET(evapotranspiration) across alpine wetlands was greatly correlated with precipitation rate. 2) Alpine wetlands responses to climate changes varied spatially and temporally due to different geographic environments, variety of wetland formation and human disturbances. 3) The vegetation responses of the Zoige wetland was the most noticeable and related to the temperature, while the GPP and NDVI of the Qiangtang Plateau and Gyaring-Ngoring Lake were significantly correlated with both temperature and precipitation. 4) ET in the Zoige wetland showed a significantly positive trend, while ET in Maidika wetland and the Qiangtang plateau showed a negative trend, implying wetland degradation in those two wetland regions. The complexities of the impacts of climate changes on alpine wetlands indicate the necessity of further study to understand and conserve alpine wetland ecosystems.  相似文献   

3.
Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.  相似文献   

4.
敦煌西湖自然保护区湿地演化及驱动力分析   总被引:1,自引:0,他引:1  
西湖国家级自然保护区位于河西走廊西端,是敦煌盆地人工绿洲的天然屏障。近几十年来,由于气候变化和人类水土资源过度开发,保护区生态环境持续恶化,湿地退化和沙漠化趋势日趋严重。本文运用多时相资源卫星遥感影像,解译分析了保护区湿地演化规律。结果表明:1980-2013年间有23个年份湿地处于快速退化状态,保护区湿地面积由1.72×104 hm2减少到0.99×104 hm2,减少了42.4%;保护区湿地的斑块数从32个增加到51个,平均斑块面积由537 hm2减少为213 hm2,湿地演化呈破碎化趋势。湿地分布质心向西南方向移动了11.59 km,湿地呈整体向西南缓慢移动的趋势。运用因子分析法对湿地演化的驱动因子进行了分类,并利用投影寻踪模型分析各驱动因子对湿地演化的贡献率,结果表明:下游湿地退化的根本原因是大规模引地表水和开采地下水灌溉,其次是气候变化引起的冰川退缩、径流量衰减。20世纪90年代,西湖保护区湿地处于相对稳定状态,建议敦煌地区耕地维持在20世纪90年代初的2.7×104 hm2水平,或通过节水、调整作物结构和跨流域调水等措施,压缩引地表水和开采地下水水量,灌溉用水需控制在20世纪90年代初的用水水平。该研究成果可为自然保护区湿地保护和流域综合开发提供依据。  相似文献   

5.
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.  相似文献   

6.
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.  相似文献   

7.
The wetlands on the Zoige Plateau have experienced serious degradation, with most of the original marsh being converted to marsh meadow or meadow. Based on the 3 wetland degradation stages, we determined the effects of wetland degradation on the structure and relative abundance of nitrogen-cycling (nitrogen-fixing, ammonia-oxidizing, and denitrifying) microbial communities in 3 soil types (intact wetland: marsh soil; early degrading wetland: marsh meadow soil; and degraded wetland: meadow soil) using 454-pyrosequencing. The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types. Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogen-fixing and denitrifying microbial bacteria differed at the class, order, family, and genus levels among the 3 soil types. At the genus level, the majority of nitrogen-fixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils; whereas those related to Geobacter originated from meadow soil. The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh (except for the 40-60 cm layer), marsh meadow and meadow soils; whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil. The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils; whereas those related to Herbaspirillum originated from meadow soil. The distribution of operational taxonomic units (OTUs) and species were correlated with soil type based upon Venn and Principal Coordinates Analysis (PCoA). Changes in soil type, caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing, ammonia-oxidizing, and denitrifying microbial communities.  相似文献   

8.
Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil properties. In this study, an experiment on degradation gradients was conducted in an alpine meadow at the Zoige Plateau in 2017. Both vegetation characteristics and soil properties were observed during the peak season of plant growth. The classification and regression tree model(CART) and structural equation modelling(SEM) were applied to screen the main factors that govern the vegetation dynamics and explore the interaction of these screened factors. Both aboveground biomass(AGB) and belowground biomass(BGB) experienced a remarkable decrease along the degradation gradients. All soil properties experienced significant variations along the degradation gradients at the 0.05 significance level. Soil physical and chemical properties explained 54.78% of the variation in vegetation biomass along the degradation gradients. AGB was mainly influenced by soil water content(SWC), soil bulk density(SBD), soil organic carbon(SOC), soil total nitrogen(STN), and pH. Soil available nitrogen(SAN), SOC and p H, had significant influence on BGB. Most soil properties had positive effects on AGB and BGB, while SBD and p H had a slightly negative effect on AGB and BGB. The correlations of SWC with AGB and BGB were relatively less significant than those of other soil properties. Our results highlighted that the soil properties played important roles in regulating vegetation dynamics along the degradation gradients and that SWC is not the main factor limiting plant growth in the humid Zoige region. Our results can provide guidance for the restoration and improvement of degraded alpine grasslands on the Tibetan Plateau.  相似文献   

9.
Northeast China is the region with the largest area of wetlands in China. The Sanjiang Plain and the Songnen Plain are large freshwater marsh distribution regions that are affected by climate warming and by the increasing frequency and density of extreme weather and are the regions most subject to disturbances by human activities in Northeast China. The wetlands of the Sanjiang Plain and the Songnen Plain have shrunk severely in the past 60 years, and wetland functions have been reduced substantially because of climate change, unreasonable land use, fire episodes, engineering and construction works and urbanization. Large-scale agricultural development started in the 1950s has been the most important driving factor for wetland loss and degradation in the Sanjiang Plain. Water shortage has been the most important factor for degradation and fragmentation of wetlands in the Songnen Plain. To mitigate wetland degradation and better protect wetlands, special regulations, long-term mechanisms and technical support of wetland protection should be established. A wetland compensation program should be implemented, and technologies for increasing the adaptive capacity of wetlands should be developed. Moreover, it is most important to find the balanced threshold between agricultural development and wetland protection.  相似文献   

10.
Zoige Wetland is one of the largest plateau wetlands in the world. This paper provides a dynamic analysis of spatial and temporal patterns of the wetland in Zoige, Eastern Qinghai-Tibetan Plateau, supported by ERDAS8.7 and ArcGIS9.0. It is the first comparative analysis of a system of rapidly changing wetland with landscape patterns in Zoige, using 3 classified landsat Thematic Mapper images of 1977, 1994 and 2001. The classified images were used to generate wetland distributing maps, and shape index (S), diversity index (H), dominance index (D), evenness index (E), fragmentation index (F) and fractal dimension (Fd) were calculated and analyzed spatiotemporally across pure grazing area in Zoige for each landscape type and in different periods (before 1977, during 1977-1994 and 1994-2001), as well as the driving forces of natural and anthropogenic. The study shows that for a comprehensive understanding of the shapes and trajectories of the shrinking and desertificated land expansion of the wetland, a spatiotemporal landscape metrics analysis in different periods is an improvement than only with landscape changing rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed wetland forms. The results indicate that wetland patterns can be changed over relatively short periods of time. The total area of lake reduced by 164.86 km^2, grassland extended by 141.74 km^2, semi-marsh extended by 105.94 km^2, marsh reduced by 86.00 km^2 the number of landscape patches reduced by 56, and their average area decreased by 2.68 km^2, the successions within lake, marsh, semi-marsh and grassland were found obviously. S decreased stepwise: D and F increased but H decreased: The changing rate after 1994 was 2.3 to 2.9 times greater than that before. The change of the wetland landscape patterns resulted in the interaction between socio-ceenomic and natural forces of positive and negative aspects; and natural factors affected as assistant aspect. Some important human activities in this period led to the change of the landscape patterns in this region directly. Some measurements made by government and NGO delayed the converting process partly.  相似文献   

11.
Amplicon sequencing of functional genes is a powerful technique to explore the diversity and abundance of microbes involved in biogeochemical processes. One such key process, denitrification, is of particular importance because it can transform nitrate(NO3-) to N2 gas that is released to the atmosphere. In nitrogen limited alpine wetlands, assessing bacterial denitrification under the stress of wetland desertification is fundamental to understand nutrients, especially nitrogen cycling in alpine wetlands, and thus imperative for the maintenance of healthy alpine wetland ecosystems. We applied amplicon sequencing of the nirS gene to analyze the response of denitrifying bacterial community to alpine wetland desertification in Zoige, China. Raw reads were processed for quality, translated with frameshift correction, and a total of 95,316 nirS gene sequences were used for rarefaction analysis, and 1011 OTUs were detected and used in downstream analysis. Compared to the pristine swamp soil, edaphic parameters including water content, organic carbon, total nitrogen, total phosphorous, available nitrogen, available phosphorous and potential denitrification rate were significantly decreased in the moderately degraded meadow soil and in severely degraded sandy soil. Diversity of the soil nirS-type denitrifying bacteria communities increased along the Zoige wetland desertification, and Proteobacteria and Chloroflexi were the dominant denitrifying bacterial species. Genus Cupriavidus(formerly Wautersia), Azoarcus, Azospira, Thiothrix, and Rhizobiales were significantly(P0.05) depleted along the wetland desertification succession. Soil available phosphorous was the key determinant of the composition of the nirS gene containing denitrifying bacterial communities. The proportion of depleted taxa increased along the desertification of the Zoige wetland, suggesting that wetland desertification created specific physicochemical conditions that decreased the microhabitats for bacterial denitrifiers and the denitrification related genetic diversity.  相似文献   

12.
基于决策树模型的湿地信息挖掘与结果分析   总被引:11,自引:0,他引:11  
目前湿地成为地学、生态学研究热点,如何快速获得区域内湿地基础信息,对实现湿地的动态监测及其他领域研究具有重要意义。本文在引入地学知识的基础上,设计并实现了两景研究区不同时相影像的湿地信息提取决策树模型。评价结果显示Kappa系数均较高,分别为0.88和0.91,表明该模型快速提取湿地信息有一定应用价值。  相似文献   

13.
Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However, there are few quantitative studies in conjunction with proper qualitative evaluation concerning land degradation and aeolian activity in the alpine realm. In this study, spectral information from two Landsat-5 TM scenes (04.08.1994 and 28.07.2009, respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps. Subsequently, the temporal and spatial patterns of the alpine wetlands/grasslands evolutions in the Zoige Basin were quantified and assessed based on these two classification maps. The most conspicuous change is the sharp increase of ~627 km2 degraded meadow. Concerning other land-covers, shallow wetland increases ~107 km2 and aeolian sediments (mobile dunes and sand sheets) have an increase of ~30 km2. Considering the deterioration, an obvious decrease of ~440 km2 degraded wetland can be observed. Likewise, decrease of deep wetland (~78 km2), humid meadow (~80 km2) and undisturbed meadow (~88 km2) were determined. These entire evolution matrixes undoubtedly hint a deteriorating tendency of the Zoige Basin ecosystem, which is characterized by significantly declined proportion of intact wetlands, meadow, rangeland and a considerable increase of degraded meadow and larger areas of mobile dunes. In particular, not only temporal alteration of the land-cover categories, the spatial and topographical characteristics of the land degradation also deserves more attention. In the alpine rangelands, the higher terraces of the river channels along with their slopes are more liable to the degradation and desertification. This tendency has significantly impeded the nomadic and agriculture activities. The set of anthropozoogenic factors encompassing enclosures, overgrazing and trampling, rodent damaging and exceedingly ditching in the wetlands are assumed to be the main controlling mechanisms for the landscape degradation. A suite of strict protection policies is urgent and indispensable for self-regulation and restoration of the alpine meadow ecosystem. Controlling the size of livestock, less ditching in the rangeland, and the launching of a more strict nature reserve management by adjacent Ruoergai, Maqu and Hongyuan Counties would be practical and efficacious in achieving these objectives.  相似文献   

14.
为研究东昆仑断裂玛沁-玛曲段的活动特征,利用双差定位法对东昆仑断裂玛沁-玛曲段2009-01~2018-09中小地震进行重新定位,并基于CAP(cut and paste)方法反演研究区域3.5级以上地震的震源机制解。结果显示,地震活动沿断裂带分段特征明显,在101°E附近地震沿阿万仓断裂分布,近10 a来玛沁至若尔盖的地震空区现象还在持续;东昆仑断裂玛沁-玛曲段震源深度主要分布在2~30 km范围内;研究区域主压应力为NEE向,主张应力为NNW向。研究结果为东昆仑断裂玛沁-玛曲段因受阿万仓断裂的吸收转换导致在玛沁-玛曲段滑动速率减弱的结论提供了地震学方面的证据。  相似文献   

15.
Wetlands play an important ecological role and provide many functions for people,yet wetlands are cur-rently decreasing and deteriorating.The ability to calculate an economic value for the loss of wetlands is becoming in-creasingly important for policy makers.In this study,remote sensing,field investigations,department visits,and other methods were used to survey wetland types,assess wetland area changes,and calculate wetland economic value.Mar-ket value loss and ecological function value loss,caused by reduction of wetland area and environmental pollution were calculated using commonly accepted methods of market valuation,ecological valuation,environmental protection investment cost analysis,and outcome parameters.According to market value loss and ecological function value loss,preliminarily fund allocation for wetland and ecological compensation was calculated.This will provide an important reference for future Yellow River Delta eco-compensation studies.  相似文献   

16.
1 Introduction The sensitivity of ecosystems to global climate change is one of important issues for research. Many studies have indicated that wetland ecosystem is one of the most vulnerable systems (Brock and Van, 1992; Vourltis and Oechel, 1997; Burkeet, 2000; Lahmer et al., 2001; Zhang et al., 2001; Deng et al., 2003). The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years (Wang, 1990; Wang and Zhang, 1991; Jin, 1993; …  相似文献   

17.
以珠穆朗玛峰国家自然保护区为研究区域,选取2009年23幅MODIS NDVI影像,采用傅里叶变换的HA-NTS算法去除云干扰,并重构NDVI时间序列图像.(1)根据研究区沼泽湿地与其他地物类型物候特征的差异,利用光谱角制图方法(SAM)获取了研究区2009年沼泽湿地的分布图.研究区沼泽湿地共有2 481.13km2,...  相似文献   

18.
基于仙女山-九畹溪断裂带附近地区地质构造,讨论三峡水库蓄水前后该断裂带附近地区的地震活动特征,同时分析该区域2014-03 M4.5与M4.7地震间的触发关系及2次地震对后续小震的影响。结果表明:1)M4.7地震可能由M4.5地震与库水渗流产生的较大孔隙压力共同触发。2)M4.5与M4.7两次地震的应力扰动导致研究区内地震活动增加,后续地震中约66.9%的地震发生于库仑应力增强区。3)2次地震产生的静态库仑应力变化导致仙女山断裂带附近地区地震活动增加,后续地震活动水平将处于背景地震活动水平之上;九畹溪断裂带活动性相对较弱,略小于背景地震活动水平,且处于应力积累阶段。  相似文献   

19.
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (I) and a fluctuant water table (IV), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%–57% higher than that at static high water table (II and III). After nitrogen addition, however, highest CO2 emission was found at II and lowest emission at III. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland. Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 90211003) and the Knowledge Innovation Program of Chinese Academy of Sciences (No. KACX3-SW-332) Biography: YANG Ji-song (1978-), male, a native of Chengwu of Shandong Province, Ph.D. candidate, specialized in environmental ecology and wetland biogeochemistry. E-mail: yangjisong@neigae.ac.cn  相似文献   

20.
以9个指标反映若尔盖高原湿地生境的环境特征,在ArcGIS 9.2平台下进行随机样方布设,采用DCCA排序方法定量分析湿地景观与环境要素之间的关系。结果表明:(1)排序前2轴累计解释了湿地景观与环境要素关系的79.4%,表明其具有有效的目标研究显示度;(2)沿地形指数所近似表达的水分状况梯度,研究区各景观类型具有明显的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号