首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind.We used the Cross-Calibrated Multi-Platform(CCMP)24-year wind field data set to investigate the trends of wind energy over the South China Sea during 1988-2011.The results reveal a clear trend of increase in wind power density for each of three base statistics(i.e.,mean,90 th percentile and 99 th percentile)in all seasons and for annual means.The trends of wind power density showed obvious temporal and spatial variations.The magnitude of the trends was greatest in winter,intermediate in spring,and smallest in summer and autumn.A greater trend of increase was found in the northern areas of the South China Sea than in southern parts.The magnitude of the annual and seasonal trends over the South China Sea was larger in extreme high events(i.e.,90~(th) and 99~(th) percentiles)compared to the mean conditions.Sea surface temperature showed a negative correlation with the variability of wind power density over the majority of the South China Sea in all seasons and annual means,except for winter(41.7%).  相似文献   

2.
以CCMP(Cross—Calibrated,Multi—Platfoml)风场为驱动场,分别驱动目前国际先进的第3代海浪模式ww3(WAVEWATCH—III)、SWAN(Simulating WAves Nearshore),对2010年9月发生在东中国海的台风“圆规”所致的台风浪进行数值模拟,就台风浪的特征进行分析,并对比分析两个海浪模式的模拟效果。结果表明:1)以CCMP风场分别驱动WW3、SWAN海浪模式,可以较好地模拟发生在东中国海的台风浪,风向与波向保持了大体一致,波高与风速的分布特征保持了很好的一致性;2)综合相关系数、偏差、均方根误差、平均绝对误差来看,两个模式模拟的有效波高(SWH—Significant Wdve Height)都具有较高精度,SWAN模拟的SWH略低于观测值,WW3模拟的SWH与观测值更为接近;3)台风浪可给琉球群岛海域带来5m左右的大浪,台风浪进入东海后,波高、风速都有一定程度的增加,当台风沿西北路径穿越朝鲜半岛时,受到半岛地形的巨大影响,风速和波高都明显降低。  相似文献   

3.
The 21st century Maritime Silk Road(MSR) proposed by China strongly promotes the maritime industry. In this paper, we use wind and ocean wave datasets from 1979 to 2014 to analyze the spatial and temporal distributions of the wind speed, significant wave height(SWH), mean wave direction(MWD), and mean wave period(MWP) in the MSR. The analysis results indicate that the Luzon Strait and Gulf of Aden have the most obvious seasonal variations and that the central Indian Ocean is relatively stable. We analyzed the distributions of the maximum wind speed and SWH in the MSR over this 36-year period. The results show that the distribution of the monthly average frequency for SWH exceeds 4 m(huge waves) and that of the corresponding wind speed exceeds 13.9 ms~(-1)(high wind speed). The occurrence frequencies of huge waves and high winds in regions east of the Gulf of Aden are as high as 56% and 80%, respectively. We also assessed the wave and wind energies in different seasons. Based on our analyses, we propose a risk factor(RF) for determining navigation safety levels, based on the wind speed and SWH. We determine the spatial and temporal RF distributions for different seasons and analyze the corresponding impact on four major sea routes. Finally, we determine the spatial distribution of tropical cyclones from 2000 to 2015 and analyze the corresponding impact on the four sea routes. The analysis of the dynamic characteristics of the MSR provides references for ship navigation as well as ocean engineering.  相似文献   

4.
This study investigated the interannual wave climate variability in the Taiwan Strait(TS) and its relationship to the El Ni?o-Southern Oscillation(ENSO) phenomenon using a high-resolution numerical wave model. The results showed the interannual variability of significant wave height(SWH) in the TS, which exhibits significant spatial and seasonal variations, is typically weaker than the seasonal variability. The standard deviation of the interannual SWH anomaly(SWHA) showed similar spatial variations in the TS throughout the year, being largest in the middle of the strait and decreasing shoreward, except in summer, when there was no local maximum in the middle of the TS. Further analyses proved the interannual wave climate variability in the TS is controlled predominantly by tropical cyclone activities in summer and by the northeasterly monsoon winds in winter. Furthermore, the interannual SWHA in the TS was found correlated highly negatively with the ENSO phenomenon. This relationship mainly derives from that during the northeasterly monsoon seasons. During the northeasterly monsoon seasons in El Ni?o(La Ni?a) years, the negative(positive) SWHA in the TS derives from weakened(strengthened) northeasterly monsoon winds induced by a lower-tropospheric anomalous anticyclone(cyclone) over the western Pacific Ocean and the South China Sea. During the southwesterly monsoon season in El Ni?o(La Ni?a) years, however, the SWH in the TS tends to increase(decrease) anomalously because of intensified(weakened) TC activities over the western North Pacific Ocean and adjacent seas.  相似文献   

5.
Analysis on long-term change of sea surface temperature in the China Seas   总被引:4,自引:0,他引:4  
Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadISST1 and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed dur-ing the past 107 years. A comparison between the reconstructed (HadISST1) and un-interpolated (HadSST3) datasets shows that the SST warming trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100 year)-1 in the East China Sea and the Taiwan Strait during winter based on HadISST1. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadISST1 is stronger than that from HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100 year)-1 when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warming trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃ (100 year)-1 than HadISST1’s trend of larger than 2.7℃ (100 year)-1 at the mouth of the Yangtze River. The results also indicate large uncertainties in the estimate of SST warming patterns.  相似文献   

6.
The validation and assessment of Envisat advanced synthetic aperture radar (ASAR) ocean wave spectra products are important to their application in ocean wave numerical predictions. Six-year ASAR wave spectra data are compared with one-dimensional (1D) wave spectra of 55 co-located moored buoy observations in the northern Pacific Ocean. The ASAR wave spectra data are firstly quality control filtered and spatio-temporal matched with buoy data. The comparisons are then performed in terms of 1D wave spectra, significant wave height (SWH) and mean wave period (MWP) in different spatio-temporal offsets respectively. SWH comparison results show the evident dependence of SWH biases on wind speed and the ASAR SWH saturation effect. The ASAR wave spectra tend to underestimate SWH at high wind speeds and overestimate SWH at low wind speeds. MWP comparison results show that MWP has a systematic bias and therefore it should be bias-modified before used. The comparisons of 1D wave spectra show that both wave spectra agree better at low frequencies than at high frequencies, which indicates the ASAR data cannot resolve the high frequency waves.  相似文献   

7.
Rural energy consumption in China has increased dramatically in the last decades, and has become a significant contributor of carbon emissions. Yet there is limited data on energy consumption patterns and their evolution in forest rural areas of China. In order to bridge this gap, we report the findings of field surveys in forest villages in Weichang County as a case study of rural energy consumption in northern China. We found that the residential energy consumption per household is 3313 kgce yr-1(kilogram standard coal equivalent per year), with energy content of 9.7 × 107 kJ yr-1, including 1783 kgce yr-1 from coal, 1386 kgce yr-1 from fuel wood, 96 kgce yr-1 from electricity, and 49 kgce yr-1 from LPG. Per capita consumption is 909 kgce yr-1 and its energy content is 2.7 × 107 kJ yr-1. Due to a total energy utilization efficiency of 24.6%, all the consumed energy can only supply about 2.4 × 107 kJ yr-1 of efficient energy content. Secondly, household energy consumption is partitioned into 2614 kgce yr-1 for heating, 616 kgce yr-1 for cooking, and 117 kgce yr-1 for home appliances. Thirdly, the associated carbon emissions per household are 2556 kgC yr-1, including1022 kgC yr-1 from unutilized fuel wood(90% of the total fuel wood). The rest of emissions come from the use of electricity(212 kgC yr-1), coal(1301 kgC yr-1) and LPG(21 kgC yr-1). Fourthly, local climate, family size and household income have strong influences on rural residential energy consumption. Changes in storage and utilization practices of fuel can lead to the 10%-30% increase in the efficiency of fuel wood use, leading to reduced energy consumption by 924 kgce yr-1 per household(27.9% reduction) and 901 kgC yr-1 of carbon emissions(35.3% reduction).  相似文献   

8.
This paper examines the capability of three regional climate models(RCMs),i.e.,RegCM3(the International Centre for Theoretical Physics Regional Climate Model),PRECIS(Providing Regional Climates for Impacts Studies)and CMM5(the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA,NCAR Mesoscale Model)to simulate the near-surface-layer winds(10 m above surface)all over China in the late 20th century.Results suggest that like global climate models(GCMs),these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country.However,RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed.In view of their merits,these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century.The results show that 1)summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2)annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3)the changes of summer mean wind speed for 2081-2100 are uncertain.As a result,although climate models are absolutely necessary for projecting climate change to come,there are great uncertainties in projections,especially for wind speed,and these issues need to be further explored.  相似文献   

9.
The wind system over the seas southeast of Asia (SSEA) plays an important role in China's climate variation. In this paper, ERS scatterometer winds covering the period from January 2000 to December 2000 and the area of 2-41 °N, 105- 130°E were analyzed with a distance-weighting interpolation method and the monthly mean distribution of the sea surface wind speed were given. The seasonal characteristics of winds in the SSEA were analyzed. Based on WAVEWATCH Ⅲ model, distribution of significant wave height was calculated.  相似文献   

10.
The nonwind-driven mechanism of the winter circulation in the northern South China Sea is discussed. Linked by the Bashi Strait to the Pacific Ocean, the northern South Cnina Sea is treated as a part of the Pacific western boundary where the circulation variation (except the very thin surface layer) is closely related to that of the ocean interior and the effect of local wind might be neglected (at least for some seasons). Based on the assumption that the thick and strong westward current which flows in through the Bashi Strait can effectively prevent water exchange between the northern and southern South China Seas, the model sea only includes the northern part. Barotropic numerical experiments show that part of this westward current is deflected by the continental slope and forms the slope area NE current—the South China Sea Warm Current. Besides, the topographical flow fed by the extension of the western boundary current and the anticyclonic eddy born near the eastern boundary are also fundamental components of the South China Sea Warm Current. The reflection of the incident Rossby waves by the continental slope is found to be of significance in the intensification of the South China Sea Warm Current. Contribution No. 1362 from Institute of Oceanology, Academia  相似文献   

11.
The wind system over the China seas plays an important role in climate variation there. In this paper, ERS-2 scatterometer winds covering the period of 1998 and the area of 25-41°N, 117-130°E were analyzed and compared to NCEP winds and buoy winds in the same period and location, to assess how well the ERS-2 data reflect the real wind regime, at least for this area. The results indicated that ERS-2 scatterometer winds are closer to buoy observations than NCEP winds. In addition, a new wind-wave growth relation was applied to calculate wave parameters.  相似文献   

12.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Niño events. The temporal mode of VEOF-2 is in good agreement with the curve of the Niño 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Niño event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Niño occurs in winter. If El Niño happens in summer, the reverse is true.  相似文献   

13.
ENSO cycle and climate anomaly in China   总被引:2,自引:0,他引:2  
The inter-annual variability of the tropical Pacific Subsurface Ocean Temperature Anomaly (SOTA) and the associated anomalous atmospheric circulation over the Asian North Pacific during the El Ni o-Southern Oscillation (ENSO) were investigated using National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) atmospheric reanalysis data and simple ocean data simulation (SODA). The relationship between the ENSO and the climate of China was revealed. The main results indicated the following: 1) there are two ENSO modes acting on the subsurface tropical Pacific. The first mode is related to the mature phase of ENSO, which mainly appears during winter. The second mode is associated with a transition stage of the ENSO developing or decaying, which mainly occurs during summer; 2) during the mature phase of El Ni o, the meridionality of the atmosphere in the mid-high latitude increases, the Aleutian low and high pressure ridge over Lake Baikal strengthens, northerly winds prevail in northern China, and precipitation in northern China decreases significantly. The ridge of the Ural High strengthens during the decaying phase of El Ni o, as atmospheric circulation is sustained during winter, and the northerly wind anomaly appears in northern China during summer. Due to the ascending branch of the Walker circulation over the western Pacific, the western Pacific Subtropical High becomes weaker, and south-southeasterly winds prevail over southern China. As a result, less rainfall occurs over northern China and more rainfall over the Changjiang River basin and the southwestern and eastern region of Inner Mongolia. The flood disaster that occurred south of Changjiang River can be attributed to this. The La Ni a event causes an opposite, but weaker effect; 3) the ENSO cycle can influence climate anomalies within China via zonal and meridional heat transport. This is known as the "atmospheric-bridge", where the energy anomaly within the tropical Pacific transfers to the mid-high latitude in the northern Pacific through Hadley cells and Rossby waves, and to the western Pacific-eastern Indian Ocean through Walker circulation. This research also discusses the special air-sea boundary processes during the ENSO events in the tropical Pacific, and indicates that the influence of the subsurface water of the tropical Pacific on the atmospheric circulation may be realized through the sea surface temperature anomalies of the mixed water, which contact the atmosphere and transfer the anomalous heat and moisture to the atmosphere directly. Moreover, the reason for the heavy flood within the Changjiang River during the summer of 1998 is reviewed in this paper.  相似文献   

14.
Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.  相似文献   

15.
The statistical characterization of sea conditions in the South China Sea(SCS) was investigated by analyzing a 30-year(1976–2005) numerically simulated daily wave height and wind speed data. The monthly variation of these parameters shows that wave height and wind speed have minimum values of 0.54 m and 4.15 ms~(-1), respectively in May and peak values of 2.04 m and 8.12 ms~(-1), respectively in December. Statistical analysis of the daily wave height and wind speed and the subsequent characterization of the annual, seasonal and monthly mean sea state based on these parameters were also done. Results showed that, in general, the slight sea state prevails in the SCS and has nearly the highest occurrence in all seasons and months. The moderate sea condition prevails in the winter months of December and January while the smooth(wavelets) sea state prevails in May. Furthermore, spatial variation of sea states showed that calm and smooth sea conditions have high occurrences(25%–80%) in the southern SCS. The slight sea condition shows the largest occurrence(25%–55%) over most parts of the SCS. High occurrences(8%–17%) of the rough and very rough seas distribute over some regions in the central SCS. Sea states from high to phenomenal conditions show rare occurrence(12%) in the northern SCS. The calm(glassy) sea condition shows no occurrence in the SCS.  相似文献   

16.
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar (HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity (PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity (MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.  相似文献   

17.
INTRODUCTIONTheBohaiSea,analmost closedshallowsea,liesnorthwesttotheYellowSea.Fig.1ashowsthege ometryoftheshorelineandthewaterdepthdistributionoftheBohaiSea,whichissmallandshallowcom paredwiththeYellowSeaortheEastChinaSea.Themeandepthislessthan 2 0meters.Be…  相似文献   

18.
The wind-sea and swell climates in the China Seas are investigated by using the 27-yr Integrated Ocean Waves for Geophysical and other Applications(IOWAGA)hindcast data.A comparison is made between the significant wave height from the IOWAGA hindcasts and that from a jointly calibrated altimetry dataset,showing the good performance of the IOWAGA hindcasts in the China Seas.A simple but practical method of diagnosing whether the sea state is wind-sea-dominant or swell-dominant is proposed based on spectral partitioning.Different from the characteristics of wind-seas and swells in the open ocean,the wave fields in the enclosed seas such as the China Seas are predominated by wind-sea events in respect of both frequencies of occurrences and energy weights,due to the island sheltering and limited fetches.The energy weights of wind-seas in a given location is usually more significant than the occurrence probability of wind-sea-dominated events,as the wave energy is higher in the wind-sea events than in the swell events on average and extreme wave heights are mostly related to wind-seas.The most energetic swells in the China Seas(and other enclosed seas)are‘local swells’,having just propagated out of their generation areas.However,the swells coming from the West Pacific also play an important role in the wave climate of the China Seas,which can only be revealed by partitioning different swell systems in the wave spectra as the energy of them is significantly less than the‘local swells’.  相似文献   

19.
????T/P(TOPEX/POSEIDON)????????????????????????????????????T/P?????????????????????????????????????????????????????????У??????С????????????????????????????????????????????????????Ч??????T/P?????Ч???????0.3m??????T/P????????Jason??1?????????????????????????????????????????????????????????????????????????????????????????????????????á?T/P??Jason??1????????????????Ч?????????????????????????0.21 m??0.05 m??  相似文献   

20.
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio (ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front (ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting (WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer (MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号