首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究   总被引:14,自引:0,他引:14  
陈江  王安建 《遥感学报》2007,11(4):601-608
ASTER遥感成像仪的发射提供了廉价的多光谱热红外数据,是热红外遥感数据的一个重要来源。ASU热红外光谱库提供了多种矿物的热红外发射率波谱的同时,还提供了矿物的化学成分即氧化物含量的分析结果。把ASU波谱库的矿物波谱重采样至ASTER各热红外波段,对矿物的波谱进行波段比值处理,与各矿物成分进行相关分析,选择波段比值与各氧化物含量最大相关系数,进行对数模拟,从而可以确定出发射率光谱与化学成分的数值关系。本文分别对SiO2,MgO,Al2O3,CaO,K2O,Na2O进行了数值分析及公式模拟。统计是根据各矿物做出的,模拟公式同样适用于岩石,进而可以在遥感热红外数据中得以应用。在四川省西范坪矿区利用模拟公式对SiO2,Na2O,K2O三种氧化物进行了岩石填图,在野外大部分得到了证实;利用SiO2进行了硅化蚀变带填图,在异常带内发现了砂岩型铜矿化。  相似文献   

2.
针对复杂艰险地区修建道路时,地质岩性难以现场获取的问题,该文利用ASTER多光谱遥感影像,研究和设计了一种顾及植被覆盖的复杂艰险地区多光谱遥感岩性信息识别提取方法.该方法根据植被覆盖情况先分类后进行岩性识别:对中高植被覆盖区进行植被信息的抑制处理,再对中低植被覆盖区采用主成分分析法进行岩性信息提取;对低植被地表裸露区域采用端元提取、光谱角填图的方法进行岩性信息的提取.最后将岩性识别提取结果与现场地勘结果进行对比验证.结果表明该方法进行岩性信息提取结果与已有的现场勘察结果基本一致,具有重要的参考和应用价值.  相似文献   

3.
结合高光谱影像地物光谱特征与高空间分辨率影像分割获得的目标对象进行地物分类。首先,对Hyperion影像进行坏线和Smile效应去除,经过FLAASH大气校正后,得到研究所用的155个波段;其次,利用地物光谱曲线的特征点确定适合地物识别的光谱分辨率,进行Hyperion影像降维,生成降维后所需的21个宽波段;然后,对IKONOS影像采用小波融合,利用多分辨率分割技术生成高空间分辨率影像目标对象;最后,基于层次分析法对分割后生成的目标对象进行分类,采用模糊隶属函数利用植被红边效应、水体在近红外波段吸收特征进行第1层次分类,再取距离值最大的前10个Hyperion影像波段作为标准最邻近分类的特征波段,完成第2层次分类。分类结果表明,研究区共分出9种地物类型,分类效果明显优于最大似然法分类与光谱角填图法。  相似文献   

4.
为了对甘肃省金昌市金川铜镍矿床外围地区进行遥感找矿预测,首先根据ASTER数据不同波段的特性分别提取岩性信息和蚀变信息,对热红外(TIR)波段,在采用波段比值法定量提取二氧化硅含量的基础上,利用波段比值计算的岩性指数(lithological index,LI)定量提取基性-超基性岩信息;对可见光-近红外(VNIR)及短波红外(SWIR)波段,运用主成分分析法定性提取高岭土-绢云母化、绿泥石化和蛇纹石化等矿化蚀变信息;然后在ArcGIS平台上,对所提取的矿化蚀变信息进行量化定级和叠加处理,制作综合矿化蚀变异常信息图(其反映的异常范围和强度与已知矿区十分一致);最后利用综合矿化蚀变异常信息,对金川铜镍矿床外围地区进行找矿预测,共圈定出3个找矿预测区,可为寻找同类型的矿床提供参考。  相似文献   

5.
帅爽  张志  吕新彪  马梓程  陈思  郝利娜 《遥感学报》2022,26(6):1247-1259
Landsat系列、ASTER等中等空间分辨率遥感数据(中分数据)覆盖了碳酸盐矿物、粘土矿物、铁氧化物矿物等矿物的诊断光谱区间,广泛应用于矿物、岩石信息提取,但受限于空间分辨率,混合像元现象明显,严重制约了其岩性分类精度。WorldView-2、QuickBird等高空间分辨率遥感数据(高分数据)提供了岩石地层表面丰富的空间结构信息,同时空间分辨率的提高也是缓解混合像元效应的最有效途径,但高分数据覆盖的光谱区间往往较窄,难以满足大多数特征吸收谱段位于短波红外、热红外区间的矿物、岩石信息提取。在岩性自动分类方法上,前人研究中仍以采用基于像元的分类方法为主,分类结果的“椒盐现象(Salt-and-pepper,出现在分类结果图中大量孤立的错分点或小图斑)”严重。为结合中分数据的光谱信息优势和高分数据的空间结构信息优势,同时减少基于像元的岩性分类方法中的“椒盐现象”,提高岩性自动分类精度,本文以Landsat 8 OLI数据和WorldView-2数据为例,提出了一种协同中、高分遥感数据进行面向对象的岩性模糊分类的方法。首先通过“结构协同”和“光谱协同”方案对WorldView-2数据和OLI数据进行信息协同,利用主成分变换对协同后数据的纹理信息和光谱信息进行压缩和增强,然后将增强后的纹理信息和光谱信息进行波段绑定,并进行多尺度分割。根据岩性单元间的光谱特征和纹理特征的差异,构建各岩性单元的模糊逻辑隶属度函数,实现对研究区岩性的模糊分类。实验结果表明,该方法成功划分了岩性单元的分布,总体岩性分类精度为89.35%。  相似文献   

6.
为研究如何利用遥感技术进行蛇绿岩岩矿信息识别和提取,以藏东罗布莎蛇绿岩为例,基于ETM和ASTER遥感数据,分别采用比值法和主成分分析法提取羟基类(蛇纹石、绿泥石)和铁染类(磁铁矿、橄榄石)矿物信息;利用纯净像元指数法(pure pixel index,PPI)提取端元波谱,结合地面已知岩性信息,分别采用光谱角分类法(spectral angle mapping,SAM)和波谱特征拟合法(spectral feature fitting,SFF)识别纯橄岩和橄榄岩,研究了罗布莎蛇绿岩及其主要蚀变矿物的空间分布特征.经过对比分析可知,用多种方法、多种数据提取的岩矿信息可以相互验证;提取出的纯橄岩和橄榄岩与所提取的羟基类和铁染类蚀变遥感异常信息有较好的空间重叠,且与地面调查结果基本吻合.研究表明,该方法用于蛇绿岩遥感岩矿信息提取是可行的,并取得较好的地质效果.  相似文献   

7.
基于ASTER遥感影像的西昆仑岩性信息提取方法研究   总被引:1,自引:0,他引:1  
基于西昆仑西段布伦口地区各岩性段内岩石样品的矿物组成及其光谱特征分析,提取代表各岩性单元的岩性端元波谱曲线;对研究区内ASTER可见光(VNIR)和短波红外(SWIR)数据进行匹配滤波处理,成功提取了研究区内9种重要的岩性单元(包括古元古界布仑阔勒群的黑云石英岩、黑云斜长片麻岩、黑云石英片岩和黑云角闪斜长片麻岩,志留系温泉沟群的绿泥石绢云母板岩、黑色千枚岩和绢云母石英片岩,以及石英闪长岩和英云闪长岩)。经已知地质资料和野外查证资料分析证明,用上述方法提取岩性信息的结果可靠,能为岩性填图及矿床勘查工作提供参考。  相似文献   

8.
根据高光谱分辨率的航空成像光谱(MAIS)和热红外多光谱(TIMS)图像数据中遥感信息特点,即可从其数据获得成像地物光谱,利用航空成像光谱图像处理和分析方法,可有效和精确地对地物特性进行识别和提取。此次以调查沉积岩地区地质地层单元、岩性识别为研究内容的中日联合遥感研究所采用的图像数据,是由中国科学院上海技术物理研究所新开发的MAIS和TIMS获取的。研究结果表明,利用计算机图像处理方法,对TIMS图像进行主成分分析(PC),MAIS的短波红外(SWIR)图像的假彩色合成图(FCC),以及可见近红外(VNIR)图像波段差值处理,可将研究区内出露的白云岩、灰岩以及红色砂岩、绿色砂岩等岩性识别出来,同时圈出了研究区内出露的各个时代的地层,证明了MAIS和TIMS在地质制图方面有较大的潜力。  相似文献   

9.
唐淑兰  孟勇 《遥感学报》2023,(7):1702-1712
为了更加准确地利用ASTER影像辅助填图,提出了一种结合小波变换、支持向量机(SVM)和投票法的ASTER影像岩性自动分类方法。首先,采用Haar小波对ASTER影像进行多尺度小波分解,统计小波系数的均值作为纹理特征,同时提取灰度共生矩阵(GLCM)方差、同质性、均值纹理特征;然后,利用小波纹理、GLCM纹理及光谱特征构造SVM分类的特征向量,并进行10次重复分类;最后利用投票法确定岩性单元。对结果进行统计评估,结合多种纹理,并利用投票法得到的岩性分类精度为92.1934%,Kappa系数为0.9202,比仅用光谱分类精度提高了13.3369%。小波纹理能提取更细节的岩性信息;投票法可以避免岩性因样本的空间变异性产生的动态变化,优化分类结果;SVM较最大似然法(MLC)更适合于训练数据集高维且非正态分布的岩性分类;采用人工蜂群算法搜索SVM的最优参数,可避免参数局部最优。  相似文献   

10.
WorldView-3卫星在8个可见光-近红外(VNIR)波段的基础上,新增了8个短波红外(SWIR)波段,大大提高了对地物信息的提取能力。利用随机森林分类方法分别对可见光-近红外8个波段影像和可见光-近红外-短波红外16个波段的影像进行实验验证;采用基于多尺度分割技术的面向对象方法对合理的特征空间进行实验与挑选。结果表明,引入SWIR波段后分类性能总体精度提升了3.78%,人工地物制图精度提升了5.65%,自然地物制图精度提升了2.88%;且允许识别特定类别(村镇中的红色低矮砖瓦房居民区),能保持地物较为完整的形状信息,可提高多光谱遥感影像的分类精度。  相似文献   

11.
Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR–SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.  相似文献   

12.
Spatial distribution of altered minerals in rocks and soils in the Gadag Schist Belt (GSB) is carried out using Hyperion data of March 2013. The entire spectral range is processed with emphasis on VNIR (0.4–1.0 μm) and SWIR regions (2.0–2.4 μm). Processing methodology includes Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes correction, minimum noise fraction transformation, spectral feature fitting (SFF) and spectral angle mapper (SAM) in conjunction with spectra collected, using an analytical spectral device spectroradiometer. A total of 155 bands were analysed to identify and map the major altered minerals by studying the absorption bands between the 0.4–1.0-μm and 2.0–2.3-μm wavelength regions. The most important and diagnostic spectral absorption features occur at 0.6–0.7 μm, 0.86 and at 0.9 μm in the VNIR region due to charge transfer of crystal field effect in the transition elements, whereas absorption near 2.1, 2.2, 2.25 and 2.33 μm in the SWIR region is related to the bending and stretching of the bonds in hydrous minerals (Al-OH, Fe-OH and Mg-OH), particularly in clay minerals. SAM and SFF techniques are implemented to identify the minerals present. A score of 0.33–1 was assigned for both SAM and SFF, where a value of 1 indicates the exact mineral type. However, endmember spectra were compared with United States Geological Survey and John Hopkins University spectral libraries for minerals and soils. Five minerals, i.e. kaolinite-5, kaolinite-2, muscovite, haematite, kaosmec and one soil, i.e. greyish brown loam have been identified. Greyish brown loam and kaosmec have been mapped as the major weathering/altered products present in soils and rocks of the GSB. This was followed by haematite and kaolinite. The SAM classifier was then applied on a Hyperion image to produce a mineral map. The dominant lithology of the area included greywacke, argillite and granite gneiss.  相似文献   

13.
In spite of the dominance of traditional mineral exploration methods that demand physical characterization of rocks and intense field work, remote sensing technologies have also evolved in the recent past to facilitate mineral exploration. In the present study, we have processed visible near infrared (VNIR) and shortwave infrared (SWIR) bands of Advanced space-borne thermal emission and reflection radiometer (ASTER) data to detect surface mineralization signatures in Mundiyawas - Khera area in Alwar basin, north-eastern Rajasthan, India using spectral angle mapper (SAM). The potential of SAM method to detect target under variable illumination condition was used to delineate galena, chalcopyrite, malachite etc. as surface signatures of mineralization. It was ensured that the identified surface anomalies were spectrally pure using pixel purity index. Spectral anomalies were validated in the field and also using X-Ray diffraction data. Spectral anomaly maps thus derived were integrated using weight of evidence method with the lineament density, geochemical anomaly, bouger anomaly maps to identify few additional potential areas of mineralization. This study thus establishes the importance of remote sensing in mineral exploration to zero in on potentially ore rich but unexplored zones.  相似文献   

14.
The Ahar area is located in East Azarbaijan province, and covers an area of about 2,500 km2. Spectral mapping techniques were applied on VNIR and SWIR of ASTER data for discriminating between hydrothermal alteration zones and the identification of high potential mineralized lithological unit associated with hydrothermal porphyry copper mineralization in the Ahar. In this research to remove atmospheric and topographic effects from ASTER data, the log-residual method (LRM) was used. Four methods, Relative Band Depth Ratios (RBD), Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and matched filtering (MF), were used to processing and interpretation of remote sensing data in the study area. Results show that ASTER images provide preliminary mineralogy information and geo-referenced alteration maps at low cost and with high accuracy for reconnaissance porphyry copper mineralizations.  相似文献   

15.
We have attempted comparative analysis of the utility of linear spectral unmixing (LSU) method and band ratios for delineating bauxite from laterite within the lateritic bauxite provinces of Chotonagpur Plateau, Jharkhand of India. This was attempted based on processing of visible–near infrared (VNIR) and shortwave infrared (SWIR) spectral bands of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. In LSU method, spectral features of main constituent minerals of lateritic bauxite are used to decompose the pixel spectra to estimate the relative abundance of bauxite and laterite in each pixel to spatially delineate bauxite within laterite. We have also compared the bauxite map derived using LSU method with bauxite maps of two band ratios in terms of spatial disposition of bauxite. We also have attempted to relate the abundance values of pixels of LSU-based bauxite map with band ratio values of bauxite pixels of two selected bauxite indices.  相似文献   

16.
Abstract

Geological mapping is one of the primary tasks of remote sensing. Remote sensing applications are especially useful when extreme environmental conditions inhibit direct survey such as in Antarctica. In this investigation, a satellite-based remote sensing approach was used for mapping alteration mineral zones and lithological units using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data in the Oscar II coast area, north-eastern Graham Land, Antarctic Peninsula. Specialized band ratios and band combinations were developed using visible and near infrared, shortwave infrared (SWIR) and thermal infrared spectral bands of ASTER for detecting alteration mineral assemblages and lithological units in Antarctic environments. Constrained Energy Minimization, Orthogonal Subspace Projection and Adaptive Coherence Estimator algorithms were tested to ASTER SWIR bands for detecting sub-pixels’ abundance of spectral features related to muscovite, kaolinite, illite, montmorillonite, epidote, chlorite and biotite. Results indicate valuable applicability of ASTER data for Antarctic geological mapping.  相似文献   

17.
This study is aimed at using the Empirical Line Method (ELM) to eliminate atmospheric effects with respect to visible and near infrared bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) and enhanced thematic mapper plus (ETM+) data. Two targets (Amran limestone as light target and quartz-biotite-sericite-graphite schists as dark target), which were widely exposed and easy to identify in the imagery were selected. The accuracy of the atmospheric correction method was evaluated from three targets (vegetation cover, Amran limestone and Akbra shale) of the surface reflectance. Analytical spectral devices (ASD) FieldSpec3 was used to measure the spectra of target samples. ETM+ data were less influenced by the atmospheric effect when compared to ASTER data. Normalized differences vegetation indices (NDVI) displayed good results with reflectance data when compared with digital number (DN) data because it is highly sensitive to ground truth reflectance (GTR). Most of the differences observed before and after calibration of satellite images (ASTER and ETM+) were absorbed in the SWIR region.   相似文献   

18.
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR–SWIR (0.4–2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial–spectral–temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.  相似文献   

19.
Laboratory reflectance spectra of 18 rock samples from the Precambrian basement of north east of Hajjah were measured and analyzed using the instrument of FieldSpec3 with spectral range 0.250–2.500 μm. The aim of this study is to use the spectral reflectance of rocks for mapping the mineral resources in the north east of Hajjah. The altered system in the study area comprises of silicification, sericitification, oxidation, clay minerals and carbonatization. Silicified alteration is not distinguishable in the regions of Visible-Near Infrared (VNIR) and Short wave Infrared (SWIR) of the electromagnetic spectrum, because of lack of diagnostic spectral absorption features in silica in this wavelength. Although the arsenopyrite and pyrite are wide spread in the whole study area their features do not appear in any range of spectra because they exhibit trans-opaque behavior and often lack distinction in VNIR and SWIR. The entire spectral reflectance curves of samples show alteration. Based on the examination of laboratory spectra all samples in the study area show promise in the field of mineral resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号