首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 MODIS数据在林火监测中的应用研究   总被引:2,自引:4,他引:2  
提出了MODIS在林火监测中的应用方法,其核心是利用MODIS热红外波段亮度温度阈值与植被指数相结合进行火点识别。对中、蒙、俄三国交界地区进行实例应用,结果表明,该方法能有效检测火点,减小由裸土、水体和云引起的误判。  相似文献   

2.
A new method for retrieving band 6 of aqua MODIS   总被引:1,自引:0,他引:1  
The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key research instrument for the NASA Earth Observing System (EOS) mission. It was successfully launched onboard the Terra satellite in December 1999 and Aqua satellite in May 2002. Both MODIS instruments have been working well except that 15 of the 20 detectors in Aqua MODIS band 6 (1.628-1.652 /spl mu/m) are either nonfunctional or noisy. The striping in Aqua MODIS band 6 caused by its nonfunctional or noisy detectors has been a serious problem for MODIS snow products, which use band 6 primarily for snow detection. MODIS scientists have been using Aqua MODIS band 7 (2.105-2.155 /spl mu/m) instead of band 6 for computing the normalized difference snow index to continue detecting global snow coverage. The main objective of this letter is to retrieve Aqua MODIS band 6 using other bands based on their relationships in Terra MODIS. The band retrieval approach proposed in this letter is also very useful for the next generation of MODIS sensor-the Visible/Infrared Imager/Radiometer Suite (VIIRS) band M10 proxy data generation. Such proxy data can support the VIIRS prelaunch end-to-end testing, postlaunch calibration/validation, and data quality checking.  相似文献   

3.
This letter reports a statistical method to estimate detector-dependent systematic error in Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) Bands 20-25 and 27-36. There exist scan-to-scan overlapped pixels in MODIS data. By analyzing a sufficiently large amount of those most overlapped pixels, the systematic error of each detector in the TIR bands can be estimated. The results show that the Aqua MODIS data are generally better than the Terra MODIS data in 160 MODIS TIR detectors. There are no detector-dependent systematic errors in Bands 31 and 32 for both Terra and Aqua MODIS data. The maximum detector errors are 3.00 K in Band 21 of Terra and -8.15 K in that of Aqua for brightness temperatures of more than 250 K  相似文献   

4.
Atmospheric products have been derived operationally from multichannel imaging data collected with the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua spacecraft. Preliminary validations of the products were previously reported. Through analysis of more extensive time-series of MODIS aerosol products (Collection 4), we have found that the aerosol products over land areas are slightly contaminated by snow and ice during the springtime snow-melting season. We have developed an empirical technique using MODIS near-infrared channels centered near 0.86 and 1.24 /spl mu/m and a thermal emission channel near 11 /spl mu/m to mask out these snow-contaminated pixels over land. Improved aerosol retrievals over land have been obtained. Sample results from application of the technique to MODIS data acquired over North America, northern Europe, and northeastern Asia are presented. The technique has been implemented into the MODIS Collection 5 operational algorithm for retrieving aerosols over land from MODIS data.  相似文献   

5.
High-resolution airborne infrared measurements of ocean skin temperature   总被引:1,自引:0,他引:1  
Airborne measurements of ocean skin temperature T/sub s/ are presented from the Coupled Boundary Layers, Air-Sea Transfer in Low Winds (CBLAST-Low) Pilot Experiment in August 2001 off Martha's Vineyard, MA. We used an infrared (IR) camera with a spatial resolution of 1 m or less and temperature resolution of roughly 0.02/spl deg/C. Using subframe sampling of the IR imagery, we achieve lower noise and higher spatial resolution than reported by previous investigators using IR radiometers. Fine-scale maps of T/sub s/ exhibit horizontal variability over spatial scales ranging from O(10 km) down to O(1 m) that are related to atmospheric and subsurface phenomena under low to moderate wind conditions. Based on supporting measurements of wind and waves, we identify coherent ramp-like structures in T/sub s/ with stratification breakdown and meandering streaky features with internal waves. Regional maps of T/sub s/ show the standard deviation for the region is /spl plusmn/1.04/spl deg/C, while the meridional and zonal variability is 0.23/spl deg/C /spl middot/ km/sup -1/ and 0.27/spl deg/C /spl middot/ km/sup -1/, respectively. This temperature variability results in meridional and zonal scalar heat flux variability of 7.0 W /spl middot/ m/sup -2/ /spl middot/ km/sup -1/ and 7.6 W /spl middot/ m/sup -2/ /spl middot/ km/sup -1/, respectively. Our results demonstrate the potential for airborne IR imagery accompanied by high-quality ocean data to identify T/sub s/ features produced by subsurface circulation.  相似文献   

6.
基于MODIS的重庆森林火灾监测与应用   总被引:1,自引:0,他引:1  
利用MODIS近红外、中红外及热红外的4个波段监测森林火灾,并提出了以MODIS 7波段为主的高温火点直接判别法和非高温火点综合阈值判别法。2006年重庆市森林火灾监测实践证明,该方法在城市森林火灾监测中是可用的。  相似文献   

7.
The common method to detect deep convective clouds is from satellite infrared (IR) measurements, which is based on thresholds of cloud-top temperatures. However, thick cirrus clouds with high cloud tops are difficult to screen out using IR methods, resulting in an overestimation of deep convective cloud fractions. Two aircraft cases with simultaneous Millimeter-wave Imaging Radiometer, Multispectral Atmospheric Mapping Sensor, and ER-2 Doppler radar measurements during the Convection and Moisture Experiment 3 in August 1998 are analyzed to investigate the influence of high thick cirrus clouds on two previously developed IR methods. In contrast, a microwave method based on the brightness temperature differences between the three water vapor channels around 183.3 GHz of the Advanced Microwave Sounding Unit-B (AMSU-B) (183.3/spl plusmn/1,183.3/spl plusmn/3, and 183.3/spl plusmn/7 GHz) can screen out high thick cirrus clouds efficiently. The tropical deep convective cloud fractions (30/spl deg/S-30/spl deg/N) estimated by the IR methods and the AMSU-B method are compared. Although their geographical distributions are in well agreement with each other, the total fractions detected by the IR methods are about 2-3.5 times greater than that detected by the AMSU-B method. Moreover, the overestimation of deep convective cloud fractions by the IR method (11-/spl mu/m brightness temperature less than 215 K) can result in a displacement in the detected location of the deep convective clouds. The average thick cirrus clouds cover 2.5 times the area of the deep convective clouds that generates them.  相似文献   

8.
The Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra surface reflectance product (MOD09A1), with bands 1 to 7, is a gridded, eight-day composite product derived from the MODIS-Terra top of atmosphere reflectance swaths. It performs cloud detection and corrects for the effects of atmospheric gases and aerosols. The cloud mask (CM) algorithms for MODIS are based on empirical thresholds on spectral reflectance and brightness temperature. Since the spatial resolution of the thermal band is 1000 m, while that of MOD09A1 is 500 m, many undetected and false clouds are observed in MOD09A1. These errors always result in temporal and spatial inconsistencies in higher-level products. In this paper, a cloud detection algorithm (TSCD) based on a MOD09A1 time series is introduced. Time series cloud detection (TSCD) algorithm is based on the relative stability of ground reflectance and the sudden variations in reflectance that result from cloud cover. The algorithm first searches the clear-sky reference data, and then discriminates clouded and unclouded pixels by detecting a sudden change of reflectance in the blue wavelength and spectral correlation coefficient at the pixel level. Compared with cloud cover assessments obtained from MODIS' original CM, TSCD provides similar or better discrimination in most situations when the land surface changes slowly.  相似文献   

9.
遥感在森林火点识别中的应用   总被引:1,自引:0,他引:1  
孙敬杰  胡北 《四川测绘》2009,32(2):91-92,96
在分析MODIS火灾检测通道的基础上,结合图像信息增强处理法、阈值法等多种火点识别处理算法,设计出了一套通过对遥感影像中红外通道的亮度、温度值进行阈值处理的森林火点识别流程,辅以一系列识别和修正方法,能有效地排除各种干扰,识别出火点。实验表明,该方法的识别率在60%以上。  相似文献   

10.
MODIS传感器从设计上考虑了火灾的监测,并为现有传感器的火灾监测系统提供独特的性能。在分析MODIS的火灾检测的通道的特性的基础上,设计了火灾预警检测系统。其主要原理是通过对红外通道的亮度温度值进行阂值处理,提取火点。  相似文献   

11.
陈洁  郑伟  刘诚  唐世浩 《遥感学报》2021,25(10):2095-2102
随着新一代静止气象卫星的发射,高频次和高时效的观测特性对于火点探测具有独特优势。本文基于Himawari-8新一代静止气象卫星高频次观测特点,提出有利于火情初期火点判识的时序探测方法。与传统的极轨气象卫星遥感火情监测采用的上下文法不同,时序探测法判识火点的方法依据为探测像元亮温在观测时间上的差异。研究结果显示,在无云及无异常热源条件下,相邻时次中红外亮温差异较小,当前后时次亮温差达到3K时,可判识出火点,而上下文法的阈值均在6 K以上,时序法的火点判识阈值较上下文法明显降低,探测相应的亚像元火点面积减小一倍以上,从而提高了火情判识的灵敏度,实现火点早期发现。本文介绍了时序法火点判识方法,并以黑龙江桦川县的星地同步观测实验进行验证,研究表明,时序法较上下文法在初发火点探测灵敏度方面有明显优势,时序法和上下文法的结合可提高气象卫星对火情发展过程的监测能力。  相似文献   

12.
A new technique to identify mixed-phase clouds but also clouds with supercooled water droplets using satellite measurements is proposed. The technique is based on measurements of the backscattered solar light at wavelengths 1.55 and 1.67 /spl mu/m in combination with cloud brightness temperature measurements at 12 /spl mu/m. For the first time, the concept of the phase index-temperature correlation plot (the P-T diagram) is introduced in the cloud remote sensing. Retrievals of cloud temperature and cloud phase index are performed using data from the Advanced Along Track Scanning Radiometer (AATSR) and Scaning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) both onboard the Envisat platform.  相似文献   

13.
An active microwave method is investigated for measuring surface air pressure by using radar reflections at frequencies around 53-55 GHz O/sub 2/ bands. The numerical simulation results for homogeneous backgrounds show that with an airborne radar working at these O/sub 2/ absorption bands, the rms errors of the radar surface pressure estimations with 15-dB signal-to-noise ratio can be as low as 4-7 mb. A radar system that covers these wavelengths will have great potentials for weather observations and other meteorological applications.  相似文献   

14.
The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.  相似文献   

15.
 基于多光谱综合的MODIS数据云检测研究   总被引:8,自引:2,他引:8  
云检测是卫星遥感数据处理中不可缺少的工作。通过分析云在不同波段中的大气辐射特点,结合MODIS数据的光谱特性,提出 一种多光谱综合的云检测方法。该算法从可见光反射率、红外波段亮温值以及亮温差等方面综合考虑,逐步建立一个云检测掩模。通 过对不同时期不同背景的MODIS数据进行验证和对比分析,结果表明,该模型的云检测效果理想,尤其对可见光波段难以识别的薄卷 云也有很好效果,为有效利用MODIS数据以及进行更加精确的反演提供可靠依据。  相似文献   

16.
本文利用对地观测卫星多传感器的特点,提出了针对ASTER数据同时反演地表温度和比辐射率的多通道算法。即利用ASTER数据的第11,12,13,14热红外波段建立热辐射传输方程,并通过对于地表比辐射率分析可知,ASTER4个热红外波段的比辐射率可以用近似线性方程表示,得到了6个方程6个未知数,从而形成了针对ASTER数据的同时反演地表温度和比辐射率的多通道算法。对于关键参数大气透过率,则是通过同一颗星的MODIS传感器的3个近红外波段反演大气水汽含量,然后用MODTRAN模拟大气水汽含量与ASTER热红外波段的统计关系,并进而根据这二关系来计算ASTER热红外波段的大气透过率。由于MODIS和ASTER是在同一颗星上。因此这种大气透过率估计方法保证了地表温度反演过程中所需大气参数的同步获取。  相似文献   

17.
为准确地了解河北省秸秆焚烧火点的空间分布,为秸秆焚烧监测的实现、禁烧工作的开展、环境质量改善提供支持.基于MODIS L1B数据、MODIS标准火点产品MOD14、全国秸秆焚烧火点日报数据为基础,采用改进型MODIS火灾探测算法,并通过IDL语言实现,得到秸秆焚烧火点空间分布信息,并进行空间与定量精度分析.研究表明:火点大部分位于河北省南部的一些地区,其中尤以邢台、石家庄、邯郸火点数量最为突出;该算法运算速度快,获取的秸秆焚烧火点数据具有一定检测精度和可靠性,对秸秆焚烧的监测具有一定的实用价值.   相似文献   

18.
A simple approach for correcting the effect of vegetation in the estimation of soil moisture (w/sub S/) from L-band passive microwave observations is presented in this study. The approach is based on statistical relationships, calibrated from simulated datasets, which requires only two observations made at distinct incidence angles (/spl theta//sub 1/,/spl theta//sub 2/). A sensitivity study was carried out, and best retrieval remote sensing configurations, in terms of polarization and couple of incidence angles (/spl theta//sub 1/,/spl theta//sub 2/), were investigated. Best estimations of w/sub S/ could be made at H polarization, for /spl theta//sub 1/ varying between 15/spl deg/ and 30/spl deg/, and with a difference (/spl theta//sub 2/-/spl theta//sub 1/) larger than 30/spl deg/. The method was tested against two experimental datasets acquired over crop fields (soybean and wheat). The average accuracy in the soil moisture retrievals during the whole crop cycle was found to be about 0.05 m/sup 3//m/sup 3/ for both crops.  相似文献   

19.
用被动微波AMSR数据反演地表温度及发射率的方法研究   总被引:8,自引:1,他引:8  
 针对对地观测卫星多传感器的特点,提出了借助MODIS地表温度产品从被动微波数据中反演地表温度的方法。即利用MODIS地表温度产品和AMSR不同通道之间的亮度温度,建立地表温度的反演方程。该方法克服了以往需要测量同步数据的困难,为不同传感器之间的参数反演相互校正和综合利用多传感器的数据提供实际应用和理论依据。文中以MODIS地表温度产品作为评价标准,对方法进行检验,其平均误差为2~3℃。另外,微波的发射率是土壤水分反演的关键参数,在对微波地表温度反演的基础上,进一步对发射率进行了研究。  相似文献   

20.
The Airborne Reflective/Emissive Spectrometer is specified as a whisk-broom imaging spectrometer for remote sensing of land surfaces covering the wavelength regions 0.47-2.45 /spl mu/m and 8-12 /spl mu/m with 160 spectral bands. The instrument is being built by Integrated Spectronics, financed by the German Aerospace Agency (DLR) and the GeoResearch Centre Potsdam (GFZ) and will be available to the scientific community from end 2005 on. The spectroradiometric design is based on scientific requirements derived from three main application scenarios comprising vegetation, soil, and mineral sciences. Two of these are described in this letter. Measured or modeled reflectance spectra are input to a simulation model that calculates at-sensor radiance spectra, resamples them with the channel-specific response functions, adds different amounts of noise in the radiance domain, and performs a retrieval to get the corresponding noisy surface reflectance spectra. The retrieval results as a function of the sensor noise level are compared with the accuracy requirements imposed by the different application fields taking into account the technical boundary conditions. The final specifications account for the most demanding requirements of the three application fields: a spectral sampling distance of 13-14 nm in the 470-1800 nm region, and 12 nm in the 2000-2450-nm region. The required noise-equivalent radiances are 5, 3, and 2 nW/spl middot/cm/sup -2//spl middot/sr/sup -1//spl middot/nm/sup -1/ for the spectral regions 470-1000, 1000-1800, and 2000-2450 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号