首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
王良清 《现代测绘》2006,29(6):39-41
省级地理空间数据交换中心是国家空间信息基础设施建设的核心内容之一。本文针对现阶段在我国建设省级地理空间数据交换中心的问题,分析了其基本建设内容,提出了需解决和应用的关键技术。  相似文献   

2.
Abstract

The geospatial sciences face grand information technology (IT) challenges in the twenty-first century: data intensity, computing intensity, concurrent access intensity and spatiotemporal intensity. These challenges require the readiness of a computing infrastructure that can: (1) better support discovery, access and utilization of data and data processing so as to relieve scientists and engineers of IT tasks and focus on scientific discoveries; (2) provide real-time IT resources to enable real-time applications, such as emergency response; (3) deal with access spikes; and (4) provide more reliable and scalable service for massive numbers of concurrent users to advance public knowledge. The emergence of cloud computing provides a potential solution with an elastic, on-demand computing platform to integrate – observation systems, parameter extracting algorithms, phenomena simulations, analytical visualization and decision support, and to provide social impact and user feedback – the essential elements of the geospatial sciences. We discuss the utilization of cloud computing to support the intensities of geospatial sciences by reporting from our investigations on how cloud computing could enable the geospatial sciences and how spatiotemporal principles, the kernel of the geospatial sciences, could be utilized to ensure the benefits of cloud computing. Four research examples are presented to analyze how to: (1) search, access and utilize geospatial data; (2) configure computing infrastructure to enable the computability of intensive simulation models; (3) disseminate and utilize research results for massive numbers of concurrent users; and (4) adopt spatiotemporal principles to support spatiotemporal intensive applications. The paper concludes with a discussion of opportunities and challenges for spatial cloud computing (SCC).  相似文献   

3.
Abstract

Grid computing is deemed as a good solution to the digital earth infrastructure. Various geographically dispersed geospatial resources can be connected and merged into a ‘supercomputer’ by using the grid-computing technology. On the other side, geosensor networks offer a new perspective for collecting physical data dynamically and modeling a real-time virtual world. Integrating geosensor networks and grid computing in geosensor grid can be compared to equipping the geospatial information grid with ‘eyes’ and ‘ears.’ Thus, real-time information in the physical world can be processed, correlated, and modeled to enable complex and advanced geospatial analyses on geosensor grid with capability of high-performance computation. There are several issues and challenges that need to be overcome before geosensor grid comes true. In this paper, we propose an integrated framework, comprising the geosensor network layer, the grid layer and the application layer, to address these design issues. Key technologies of the geosensor grid framework are discussed. And, a geosensor grid testbed is set up to illustrate the proposed framework and improve our geosensor grid design.  相似文献   

4.
Abstract

Global challenges (such as economy and natural hazards) and technology advancements have triggered international leaders and organizations to rethink geosciences and Digital Earth in the new decade. The next generation visions pose grand challenges for infrastructure, especially computing infrastructure. The gradual establishment of cloud computing as a primary infrastructure provides new capabilities to meet the challenges. This paper reviews research conducted using cloud computing to address geoscience and Digital Earth needs within the context of an integrated Earth system. We also introduce the five papers selected through a rigorous review process as exemplar research in using cloud capabilities to address the challenges. The literature and research demonstrate that spatial cloud computing provides unprecedented new capabilities to enable Digital Earth and geosciences in the twenty-first century in several aspects: (1) virtually unlimited computing power for addressing big data storage, sharing, processing, and knowledge discovering challenges, (2) elastic, flexible, and easy-to-use computing infrastructure to facilitate the building of the next generation geospatial cyberinfrastructure, CyberGIS, CloudGIS, and Digital Earth, (3) seamless integration environment that enables mashing up observation, data, models, problems, and citizens, (4) research opportunities triggered by global challenges that may lead to breakthroughs in relevant fields including infrastructure building, GIScience, computer science, and geosciences, and (5) collaboration supported by cloud computing and across science domains, agencies, countries to collectively address global challenges from policy, management, system engineering, acquisition, and operation aspects.  相似文献   

5.
Abstract

People are now using geoinformation for many different purposes and consequently one can confidently say that the need for geospatial data infrastructure (GDI) cannot be overstated in sub-Saharan Africa. Geospatial information (GI) is essential to socio-economic planning and development of sub-Sahara African countries. This paper therefore examines: GI during the last centuries in sub-Sahara Africa; recent paradigms in GDI in sub-Sahara Africa; the benefit of GDI to the African economy and the future of GDI in sub-Sahara Africa. This study discovered that most countries in sub-Saharan Africa did not have timely access to accurate geospatial data throughout the last centuries. This significantly hindered meaningful social and economic development. Development of GDI nonetheless, will enhance search and retrieval of geospatial data in Africa. This is one of the benefits that can be derived from implementing GDI in sub-Sahara Africa. Therefore, it is necessary to review cadastral survey laws and regulations so as to incorporate the use of recent geospatial equipment.  相似文献   

6.
Abstract

While significant progress has been made to implement the Digital Earth vision, current implementation only makes it easy to integrate and share spatial data from distributed sources and has limited capabilities to integrate data and models for simulating social and physical processes. To achieve effectiveness of decision-making using Digital Earth for understanding the Earth and its systems, new infrastructures that provide capabilities of computational simulation are needed. This paper proposed a framework of geospatial semantic web-based interoperable spatial decision support systems (SDSSs) to expand capabilities of the currently implemented infrastructure of Digital Earth. Main technologies applied in the framework such as heterogeneous ontology integration, ontology-based catalog service, and web service composition were introduced. We proposed a partition-refinement algorithm for ontology matching and integration, and an algorithm for web service discovery and composition. The proposed interoperable SDSS enables decision-makers to reuse and integrate geospatial data and geoprocessing resources from heterogeneous sources across the Internet. Based on the proposed framework, a prototype to assist in protective boundary delimitation for Lunan Stone Forest conservation was implemented to demonstrate how ontology-based web services and the services-oriented architecture can contribute to the development of interoperable SDSSs in support of Digital Earth for decision-making.  相似文献   

7.
Despite advancements in geographic information system (GIS) technology, the efficient and effective utilization of GIS to solve geospatial problems is a daunting process requiring specialized knowledge and skills. Two of the most important and burdensome tasks in this process are interpretation of geospatial queries and mapping the interpreted results into geospatial data models and geoprocessing operations. With the current state of GIS, there exists a gap between the knowledge user's possess and the knowledge and skills they need to utilize GIS for solving problems. Currently, users resort to training and practice on GIS technology or involving GIS experts. Neither of these options is optimal and there is a need for a new approach that automates geoprocessing tasks using GIS technology. This paper presents an ontological engineering methodology that uses multiple ontologies and the mappings among them to automate certain tasks related to interpretation of geospatial queries and mapping the interpreted results into geospatial data models and geoprocessing operations. The presented methodology includes conceptualization of geospatial queries, knowledge representation for queries, techniques for relating elements in different ontologies, and an algorithm that uses ontologies to map queries to geoprocessing operations.  相似文献   

8.
9.
10.
Earth observation satellites produce large amounts of images/data that not only must be processed and preserved in reliable geospatial platforms but also efficiently disseminated among partners/researchers for creating derivative products through collaborative workflows. Organizations can face up this challenge in a cost-effective manner by using cloud services. However, outages and violations of integrity/confidentiality associated to this technology could arise. This article presents FedIDS, a suite of cloud-based components for building dependable geospatial platforms. The Fed component enables organizations to build shared geospatial data infrastructure through federation of independent cloud resources to withstand outages, whereas IDS avoids violations of integrity/confidentiality of images/data in sharing information and collaboration workflows. A FedIDS prototype, deployed in Spain and Mexico, was evaluated through a study case based on a satellite imagery captured by a Mexican antenna and another based on a satellite imagery of a European observation mission. The acquisition, storage and sharing of images among users of the federation, the exchange of images between Mexican and Spanish sites and outage scenarios were evaluated. The evaluation revealed the feasibility, reliability and efficiency of FedIDS, in comparison with available solutions, in terms of performance, storage consume and integrity/confidentiality when sharing images/data in collaborative scenarios.  相似文献   

11.
A Rule-Based Strategy for the Semantic Annotation of Geodata   总被引:2,自引:0,他引:2  
The ability to represent geospatial semantics is of great importance when building geospatial applications for the Web. This ability will enhance discovery, retrieval and translation of geographic information as well as the reuse of geographic information in different contexts. The problem of generating semantic annotations has been recognized as one of the most serious obstacles for realizing the Geospatial Semantic Web vision. We present a rule‐based strategy for the semantic annotation of geodata that combines Semantic Web and Geospatial Web Services technology. In our approach, rules are employed to partially automate the annotation process. Rules define conditions for identifying geospatial concepts. Based on these rules, spatial analysis procedures are implemented that allow for inferring whether or not a feature in a dataset represents an instance of a geospatial concept. This automated evaluation of features in the dataset generates valuable information for the creation and refinement of semantic annotations on the concept level. The approach is illustrated by a case study on annotating data sources containing representations of lowlands. The presented strategy lays the foundations for the specification of a semantic annotation tool for geospatial web services that supports data providers in annotating their sources according to multiple domain views.  相似文献   

12.
ABSTRACT

Geovisualisation is a knowledge-intensive art in which both providers and users need to possess a wide range of knowledge. Current syntactic approaches to presenting visualisation information lack semantics on the one hand, and on the other hand are too bespoke. Such limitations impede the transfer, interpretation, and reuse of the geovisualisation knowledge. In this paper, we propose a knowledge-based approach to formally represent geovisualisation knowledge in a semantically-enriched and machine-readable manner using Semantic Web technologies. Specifically, we represent knowledge regarding cartographic scale, data portrayal and geometry source, which are three key aspects of geovisualisation in the contemporary web mapping era, coupling ontologies and semantic rules. The knowledge base enables inference for deriving the corresponding geometries and portrayals for visualisation under different conditions. A prototype system is developed in which geospatial linked data are used as underlying data, and some geovisualisation knowledge is formalised into a knowledge base to visualise the data and provide rich semantics to users. The proposed approach can partially form the foundation for the vision of web of knowledge for geovisualisation.  相似文献   

13.
Abstract

Maps which are created on demand by combining geospatial data from different Web Map Services integrate conflicting portrayals and do not satisfy the requirements of effective cartographic communication. A significant improvement is achieved by selecting clearly distinguishable colours which are determined by solving an optimisation problem. Cartographic guidelines and user characteristics (e.g. colour vision impairment) can be incorporated into the optimisation model as constraints which guide the selection of colours.  相似文献   

14.
Abstract

In recent years, geographical information systems have been employed in a wide variety of application domains, and as a result many research efforts are being devoted to those upcoming problems. Geospatial data security, especially access control, has attracted increased research interests within the academic community. The tendency towards sharing and interoperability of geospatial data and applications makes it common to acquire and integrate geospatial data from multiple organisations to accomplish a complex task. Meanwhile, many organisations have the requirement for securing access to possessed sensitive or proprietary geospatial data. In this heterogeneous and distributed environment, consistent access control functionality is crucial to promote controlled accessibility. As an extension of general access control mechanisms in the IT domain, the mechanism for geospatial data access control has its own requirements and characteristics of granularity and geospatial logic. In this paper, we address several fundamental aspects concerning the design and implementation of an access control system for geospatial data, including the classification, requirements, authorisation models, storage structures and management approaches for authorisation rules, matching and decision-making algorithms between authorisation rules and access requests, and its policy enforcement mechanisms. This paper also presents a system framework for realising access control functionality for geospatial data, and explain access control procedures in detail.  相似文献   

15.
Abstract

This paper introduces a new concept, distributed geospatial information processing (DGIP), which refers to the process of geospatial information residing on computers geographically dispersed and connected through computer networks, and the contribution of DGIP to Digital Earth (DE). The DGIP plays a critical role in integrating the widely distributed geospatial resources to support the DE envisioned to utilise a wide variety of information. This paper addresses this role from three different aspects: 1) sharing Earth data, information, and services through geospatial interoperability supported by standardisation of contents and interfaces; 2) sharing computing and software resources through a GeoCyberinfrastructure supported by DGIP middleware; and 3) sharing knowledge within and across domains through ontology and semantic searches. Observing the long-term process for the research and development of an operational DE, we discuss and expect some practical contributions of the DGIP to the DE.  相似文献   

16.
随着对地立体观测体系的建立,遥感大数据不断累积。传统基于文件、景/幅式的影像组织方式,时空基准不够统一,集中式存储不利于大规模并行分析。对地观测大数据分析仍缺乏一套统一的数据模型与基础设施理论。近年来,数据立方体的研究为对地观测领域大数据分析基础设施提供了前景。基于统一的分析就绪型多维数据模型和集成对地观测数据分析功能,可构建一个基于数据立方的对地观测大数据分析基础设施。因此,本文提出了一个面向大规模分析的多源对地观测时空立方体,相较于现有的数据立方体方法,强调多源数据的统一组织、基于云计算的立方体处理模式以及基于人工智能优化的立方体计算。研究有助于构建时空大数据分析的新框架,同时建立与商业智能领域的数据立方体关联,为时空大数据建立统一的时空组织模型,支持大范围、长时序的快速大规模对地观测数据分析。本文在性能上与开源数据立方做了对比,结果证明提出的多源对地观测时空立方体在处理性能上具有明显优势。  相似文献   

17.
ABSTRACT

Big Earth Data has experienced a considerable increase in volume in recent years due to improved sensing technologies and improvement of numerical-weather prediction models. The traditional geospatial data analysis workflow hinders the use of large volumes of geospatial data due to limited disc space and computing capacity. Geospatial web service technologies bring new opportunities to access large volumes of Big Earth Data via the Internet and to process them at server-side. Four practical examples are presented from the marine, climate, planetary and earth observation science communities to show how the standard interface Web Coverage Service and its processing extension can be integrated into the traditional geospatial data workflow. Web service technologies offer a time- and cost-effective way to access multi-dimensional data in a user-tailored format and allow for rapid application development or time-series extraction. Data transport is minimised and enhanced processing capabilities are offered. More research is required to investigate web service implementations in an operational mode and large data centres have to become more progressive towards the adoption of geo-data standard interfaces. At the same time, data users have to become aware of the advantages of web services and be trained how to benefit from them most.  相似文献   

18.
Abstract

Digital Earth is an important field of information technology and a research frontier of geosciences in the 21st century. So far, the Grid computing technique is one of the best solutions for Digital Earth infrastructure. Digital Earth can only be realised through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organisationally dispersed. Earth observation (EO) includes information acquisition, processing and applications. Information acquisition provides a vast amount of spatial data for building the fabric resource infrastructure. Information processing means that spatial information processing middleware is used with large amounts of secure Grid computing resources for real-time processing of all kinds of spatial data. We are currently working on the development of core-middleware for EO data processing and applications for the Digital Earth Prototype System, which is available in the Institute of Remote Sensing Applications (IRSA), Chinese Academy of Sciences (CAS) The further results will be available soon.  相似文献   

19.
A Task-Based Ontology Approach to Automate Geospatial Data Retrieval   总被引:1,自引:0,他引:1  
This paper presents a task‐based and Semantic Web approach to find geospatial data. The purpose of the project is to improve data discovery and facilitate automatic retrieval of data sources. The work presented here helps create the beginnings of a Geospatial Semantic Web. The intent is to create a system that provides appropriate results to application users who search for data when facing tasks such as emergency response or planning activities. In our task‐based system, we formalize the relationships between types of tasks, including emergency response, and types of data sources needed for those tasks. Domain knowledge, including criteria describing data sources, is recorded in an ontology language. With the ontology, reasoning can be done to infer various types of information including which data sources meet specific criteria for use in particular tasks. The vision presented here is that in an emergency, for example, a user accesses a Web‐based application and selects the type of emergency and the geographic area. The application then returns the types and locations (URLs) of the specific geospatial data needed. We explore the abilities and limitations of the OWL Web Ontology Language along with other Semantic Web technologies for this purpose.  相似文献   

20.
Infrastructure for spatial information is an important part of our national information construction that is the subject of essentials on the social of spatial information. As an EU member, Germany has...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号