首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
With the development of global changes, researchers from all over the world increasingly pay attention to drought detection, and severe droughts that may have resulted from climate change. In this paper, spatial and temporal variability of drought is evaluated based on precipitation data and remotely sensed images. The standard precipitation index (SPI) and vegetation condition index (VCI) are used to evaluate the spatial and temporal characteristics of meteorological and vegetative drought in Tigray, Northern Ethiopia. Based on the drought critical values of SPI and VCI defining drought, the spatial and temporal extent of droughts in the study area is established. We processed 396 decadal images in order to produce the multi-temporal VCI drought maps. The results of the SPI and VCI analysis reveal that the eastern and southern zones of the study region suffered a recurrent cycle of drought over the last decade. Results further show that there is a time lag between the period of the peak VCI and precipitation values obtained from the meteorological stations across the study area. A significant agreement was observed between VCI values with the current plus last two-months of precipitation. The study demonstrates the utility of the vegetation condition index in semi-arid and arid regions.  相似文献   

2.
Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop yields and early warning of food insecurity during drought years for these identified zones.  相似文献   

3.
Spatial differences in drought proneness and intensity of drought caused by differences in cropping patterns and crop growing environments within a district indicate the need for agricultural drought assessment at disaggregated level. The objective of this study is to use moderate resolution satellite images for detailed assessment of the agricultural drought situation at different administrative units (blocks) within a district. Monthly time composite NDVI images derived from moderate resolution AWiFS (60 m) and WiFS (180 m) images from Indian Remote Sensing satellites were analysed along with ground data on rainfall and crop sown areas for the kharif seasons (June – November) of 2002 (drought year), 2004 (early season drought) and 2005 (good monsoon year). The impact of the 2002 meteorological drought on crop area in different blocks of the district was assessed. The amplitude of crop condition variability in a severe drought year (2002) and a good year (2005) was used to map the degree of vulnerability of different blocks in the district to agricultural drought. The impact of early season deficit rainfall in 2004 on the agricultural situation and subsequent recovery of the agricultural situation was clearly shown. Agricultural drought assessment at disaggregated level using moderate resolution images is useful for prioritizing the problem areas within a district to undertake, in season drought management plans, such as alternate cropping strategies, as well as for end of the season drought relief management actions. The availability of ground data on rainfall, cropping pattern, crop calendar, irrigation, soil type etc., is very crucial in order to interpret the seasonal NDVI patterns at disaggregated level for drought assessment. The SWIR band of AWiFS sensor is a potential data source for assessing surface drought at the beginning of the season.  相似文献   

4.
The untimely onset and uneven distribution of south-west monsoon rainfall lead to agricultural drought causing reduction in food-grain production with high vulnerability over semi-arid tract (SAT) of India. A combined deficit index (CDI) has been developed from tri-monthly sum of deficit in antecedent rainfall and deficit in monthly vegetation vigor with a lag period of one month between the two. The formulation of CDI used a core biophysical (e.g., NDVI) and a hydro-meteorological (e.g., rainfall) variables derived using observation from Indian geostationary satellites. The CDI was tested and evaluated in two drought years (2009 and 2012) within a span of five years (2009–2013) over SAT. The index was found to have good correlation (0.49–0.68) with standardized precipitation index (SPI) computed from rain-gauge measurements but showed lower correlation with anomaly in monthly land surface temperature (LST). Significant correlations were found between CDI and reduction in agricultural carbon productivity (0.67–0.83), evapotranspiration (0.64–0.73), agricultural grain yield (0.70–0.85). Inconsistent correlation between CDI and ET reduction was noticed in 2012 in contrast to consistent correlation between CDI and reduction in carbon productivity both in 2009 and 2012. The comparison of CDI-based drought-affected area with those from existing operational approach showed 75% overlapping regions though class-to-class matching was only 40–45%. The results demonstrated that CDI is a potential indicator for assessment of late-season regional agricultural drought based on lag-response between water supply and crop vigor.  相似文献   

5.
ABSTRACT

Agricultural drought threatens food security. Numerous remote-sensing drought indices have been developed, but their different principles, assumptions and physical quantities make it necessary to compare their suitability for drought monitoring over large areas. Here, we analyzed the performance of three typical remote sensing-based drought indices for monitoring agricultural drought in two major agricultural production regions in Shaanxi and Henan provinces, northern China (predominantly rain-fed and irrigated agriculture, respectively): vegetation health index (VHI), temperature vegetation dryness index (TVDI) and drought severity index (DSI). We compared the agreement between these indices and the standardized precipitation index (SPI), soil moisture, winter wheat yield and National Meteorological Drought Monitoring (NMDM) maps. On average, DSI outperformed the other indices, with stronger correlations with SPI and soil moisture. DSI also corresponded better with soil moisture and NMDM maps. The jointing and grain-filling stages of winter wheat are more sensitive to water stress, indicating that winter wheat required more water during these stages. Moreover, the correlations between the drought indices and SPI, soil moisture, and winter wheat yield were generally stronger in Shaanxi province than in Henan province, suggesting that remote-sensing drought indices provide more accurate predictions of the impacts of drought in predominantly rain-fed agricultural areas.  相似文献   

6.
Agricultural drought has been a recurrent phenomenon in many parts of India. Remote sensing plays a vital role in real time monitoring of the agricultural drought conditions over large area, there by effectively supplementing the ground mechanism. Conventional drought monitoring is based on subjective data. The satellite based monitoring such as National Agricultural Drought Assessment and Monitoring System (NADAMS) is based on the crop condition, which is an integrated effect of soil, effective rainfall, weather, etc. Drought causes changes in the external appearance of vegetation, which can clearly be identified (by their changed spectral response) and judged using satellite sensors through the use of vegetation indices. These indices are functions of rate of growth of the plants and are sensitive to the changes of moisture stress in vegetation. The satellite based drought assessment methodology was developed based on relationship obtained between previous year’s Normalised Difference Vegetation Index (NDVI) profiles with corresponding agricultural performance available at district/block level. Palar basin, one of the major river basins in Tamil Nadu state was selected as the study area. The basin covers 3 districts, which contain 44 blocks. Wide Image Field Sensor (WiFS) of 188m spatial resolution from Indian Remote Sensing Satellite (IRS) data was used for the analysis. Satellite based vegetation index NDVI, was generated for Samba and Navarai seasons in the years 1998 and 1999. An attempt has been made to estimate the area under paddy. It was also observed that, there was reduction in the crop area as well as vigour in the vegetation in both Samba and Navarai seasons in 1999 when compared with 1998. Drought severity maps were prepared in GIS environment giving blockwise agricultural water deficiency status.  相似文献   

7.
ABSTRACT

Globally, drought constitutes a serious threat to food and water security. The complexity and multivariate nature of drought challenges its assessment, especially at local scales. The study aimed to assess spatiotemporal patterns of crop condition and drought impact at the spatial scale of field management units with a combined use of time-series from optical (Landsat, MODIS, Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel 1) data. Several indicators were derived such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasseled cap indices and Sentinel-1 based backscattering intensity and relative surface moisture. We used logistic regression to evaluate the drought-induced variability of remotely sensed parameters estimated for different phases of crop growth. The parameters with the highest prediction rate were further used to estimate thresholds for drought/non-drought classification. The models were evaluated using the area under the receiver operating characteristic curve and validated with in-situ data. The results revealed that not all remotely sensed variables respond in the same manner to drought conditions. Growing season maximum NDVI and NDMI (70–75%) and SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively. The developed approach can be further used to assess crop condition and to support decision-making in areas which are more susceptible and vulnerable to drought.  相似文献   

8.
遥感技术具备实时快速、时空连续、广覆盖尺度等独特优势,在全球气候恶化大背景下,利用遥感干旱监测方法相比于传统地面监测手段,能够提供实时、准确、稳定的旱情信息,辅助科学决策。目前常用遥感旱情监测方法大多依赖全域性数学模型建模,假定了旱情模式的空间平稳特性,因而难以准确反映旱情模式的局部差异特征。本文提出利用地理加权回归模型GWR (Geographically Weighted Regression),考虑旱情模式的空间非平稳特性,综合多种遥感地面旱情监测指数,以实现传统全域旱情监测模型的局部优化。以美国大陆为研究区,监测2002年—2011年共10年的旱情状态。研究表明,GWR模型能够提供空间变化的局部最佳估计模型参数,监测结果更加吻合标准美国旱情监测USDM (U.S Drought Monitor)验证数据,且与地面实测值的最高相关系数R达到0.8552,均方根误差RMSE达到0.972,显著优于其他遥感旱情监测模型。GWR模型具备空间非平稳探测优势,实现了旱情模式的局部精细探测,能够显著提升遥感旱情监测精度,具备较好的应用前景。  相似文献   

9.
Evapotranspiration is a key parameter for water stress assessment as it is directly related to the moisture status of the soil-vegetation system and describes the moisture transfer from the surface to the atmosphere. With the launch of the Meteosat Second Generation geostationary satellites and the setup of the Satellite Application Facilities, it became possible to operationally produce evapotranspiration data with high spatial and temporal evolution over the entire continents of Europe and Africa. In the frame of this study we present an evaluation of the potential of the evapotranspiration (ET) product from the EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA-SAF) for drought assessment and monitoring in Europe.To assess the potential of this product, the LSA-SAF ET was used as input for the ratio of ET to reference evapotranspiration (ET0), the latter estimated from the ECMWF interim reanalysis. In the analysis two case studies were considered corresponding to the drought episodes of spring/summer 2007 and 2011. For these case studies, the ratio ET/ET0 was compared with meteorological drought indices (SPI, SPEI and Sc-PDSI for 2007 and SPI for 2011) as well as with the anomalies of the fraction of absorbed photosynthetic active radiation (fAPAR) derived from remote sensing data. The meteorological and remote sensing indicators were taken from the European Drought Observatory (EDO) and the CARPATCLIM climatological atlas.Results show the potential of ET/ET0 to characterize soil moisture variability, and to give additional information to fAPAR and to precipitation distribution for drought assessment. The main limitations of the proposed ratio for drought characterization are discussed, including options to overcome them. These options include the use of filters to discriminate areas with a low percentage vegetation cover or areas that are not in their growing period and the use of evapotranspiration without water restriction (ETwwr), obtained as output of the LSA-SAF model instead of ET0. The ET/ETwwr ratio was tested by comparing its accumulated values per growing period with the winter wheat yield values per country published by Eurostat. The results point to the potential of using the remote sensing based LSA-SAF evapotranspiration and the ET/ETwwr ratio for vegetation monitoring at large scale, especially in areas where data is generally lacking.  相似文献   

10.
MODIS光谱指数在中国西南干旱监测中的应用   总被引:2,自引:0,他引:2  
王先伟  刘梅  柳林 《遥感学报》2014,18(2):432-452
利用标准化降雨指数SPI比较了基于MODIS反射率数据提取的8种光谱指数(NDVI、NDWI、VARI、EVI、NDIIB6、NDIIB7、D1640和SR)对中国西南四省市(四川、重庆、云南和贵州)2000年—2012年典型干旱事件的反映。研究结果表明:(1)SPI指数能直接反映监测站点附近的干旱情况,其中3个月和6个月尺度的SPI(SPI3和SPI6)对2006年和2009年—2010年该区的特大干旱事件的监测效果较好;(2)除了D1640外,其余7种光谱指数的距平值与3个月尺度的SPI3都具有显著的相关性,其中NDIIB7、NDIIB6和VARI与SPI3的相关性较高(R0.3),在一定程度上可以表征中国西南地区的干旱状况;(3)MODIS NDIIB7距平值与3个月尺度的SPI3相关性最高(R=0.35),本文以其为例,再现了云贵高原2009年—2010年特大持续干旱事件的时空演变过程。  相似文献   

11.
In the present study, prediction of agricultural drought has been addressed through prediction of agricultural yield using a model based on NDVI-SPI. It has been observed that the meteorological drought index SPI with different timescale is correlated with NDVI at different lag. Also NDVI of current fortnight is correlated with NDVI of previous lags. Based on the correlation coefficients, the Multiple Regression Model was developed to predict NDVI. The NDVI of current fortnight was found highly correlated with SPI of previous fortnight in semi-arid and transitional zones. The correlation between NDVI and crop yield was observed highest in first fortnight of August. The RMSE of predicted yield in drought year was found to be about 17.07 kg/ha which was about 6.02 per cent of average yield. In normal year, it was 24 kg/Ha denoting about 2.1 per cent of average yield.  相似文献   

12.
The hard-rock hilly Aravalli terrain of Rajasthan province of India suffers with frequent drought due to poor and delayed monsoon, abnormally high summer-temperature and insufficient water resources. In the present study, detailed analysis of meteorological and hydrological data of the Aravalli region has been carried out for the years 1984–2003. Standardised Precipitation Index (SPI) has been used to quantify the precipitation deficit. Standardised Water-Level Index (SWI) has been developed to assess ground-water recharge-deficit. Vegetative drought indices like Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) and Vegetation Health Index (VHI) have been computed using NDVI values obtained from Global Vegetation Index (GVI) and thermal channel data of NOAA AVHRR satellite. Detailed analyses of spatial and temporal drought dynamics during monsoon and non-monsoon seasons have been carried out through drought index maps generated in Geographic Information Systems (GIS) environment. Analysis and interpretation of these maps reveal that negative SPI anomalies not always correspond to drought. In the Aravalli region, aquifer-stress shifts its position time to time, and in certain pockets it is more frequent. In comparison to hydrological stress, vegetative stress in the Aravalli region is found to be slower to begin but quicker to withdraw.  相似文献   

13.
Drought is one of the most frequent climate-related disasters occurring in Southwest China, where the occurrence of drought is complex because of the varied landforms, climates and vegetation types. To monitor the comprehensive information of drought from meteorological to vegetation aspects, this paper intended to propose the optimized meteorological drought index (OMDI) and the optimized vegetation drought index (OVDI) from multi-source satellite data to monitor drought in three bio-climate regions of Southwest China. The OMDI and OVDI were integrated with parameters such as precipitation, temperature, soil moisture and vegetation information, which were derived from Tropical Rainfall Measuring Mission (TRMM), Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (MODIS LST), AMSR-E Soil Moisture (AMSR-E SM), the soil moisture product of China Land Soil Moisture Assimilation System (CLSMAS), and MODIS Normalized Difference Vegetation Index (MODIS NDVI), respectively. Different sources of satellite data for one parameter were compared with in situ drought indices in order to select the best data source to derive the OMDI and OVDI. The Constrained Optimization method was adopted to determine the optimal weights of each satellite-based index generating combined drought indices. The result showed that the highest positive correlation and lowest root mean square error (RMSE) between the OMDI and 1-month standardized precipitation evapotranspiration index (SPEI-1) was found in three regions of Southwest China, suggesting that the OMDI was a good index in monitoring meteorological drought; in contrast, the OVDI was best correlated to 3-month SPEI (SPEI-3), and had similar trend with soil relative water content (RWC) in temporal scale, suggesting it a potential indicator of agricultural drought. The spatial patterns of OMDI and OVDI along with the comparisons of SPEI-1 and SPEI-3 for different months in one year or one month in different years showed significantly varied drought locations and areas, demonstrating regional and seasonal fluctuations, and suggesting that drought in Southwest China should be monitored in seasonal and regional level, and more fine distinctions of seasons and regions need to be considered in the future studies of this area.  相似文献   

14.
This study examined the use of remote sensing in detecting and assessing drought in Iloilo Province, Philippines. A remote sensing-based soil moisture index (SMI), rainfall anomaly data from the Tropical Rainfall Measuring Mission (TRMM), and rice production departure (Pd ) data were used for drought detection and validation. The study was conducted using two drought years (2001, 2005) and one non-drought year (2002). According to SMI data, the drought distribution was classified into four major groups. SMI values > 0.3 were considered not to be drought and SMI values ≤ 0.3 were classified as slight, moderate, and severe drought. Results based on SMI revealed that the study area experienced drought in 2001 and 2005, while 2002 exhibited no drought. On the other hand, TRMM-based rainfall anomaly data revealed negative values in 2001 and 2005 and positive values in 2002. Below-normal Pd values were observed in 2005 and above-normal values in 2002, whereas nearly normal values prevailed in 2001. Yield indicator data were crucial for the assessment of drought impacts on rice production. In most cases, the pattern of rice production and productivity revealed that the decline in the production or productivity of rice for a particular year coincided with lower SMI values and greater rainfall departure or negative anomaly.  相似文献   

15.
ABSTRACT

Particulate matter (PM) is a widely used indicator of air quality. Satellite-derived aerosol products such as aerosol optical depth (AOD) have been a useful source of data for ground-level PM monitoring. However, satellite-based approaches for PM monitoring have limitations such as impacts of cloud cover. Recently, many studies have documented advances in modeling for monitoring PM over the globe. This review examines recent papers on ground-level PM monitoring for the past 10 years focusing on modeling techniques, sensor types, and areas. Satellite-based retrievals of AOD and commonly used approaches for estimating PM concentrations are also briefly reviewed. Research trends and challenges are discussed based on the review of 130 papers. The limitations and challenges include spatiotemporal scale issues, missing values in satellite-based variables, sparse distribution of ground stations for calibration and validation, unbalanced distribution of PM concentrations, and difficulty in the operational use of satellite-based PM estimation models. The literature review suggests there is room for further investigating: 1) the spatial extension of PM monitoring to global scale; 2) the synergistic use of satellite-derived products and numerical model output to improve PM estimation accuracy, gap-filling, and operational monitoring; 3) the use of more advanced modeling techniques including data assimilations; 4) the improvement of emission data quality; and 5) short-term (hours to days) PM forecasts through combining satellite data and numerical forecast model results.  相似文献   

16.
Accurately monitoring the temporal, spatial distribution and severity of agricultural drought is an effective means to reduce the farmers’ losses. Based on the concept of the new drought index called VegDRI, this paper established a new method, named the Integrated Surface Drought Index (ISDI). In this method, the Palmer Drought Severity Index (PDSI) was selected as the dependent variable; for the independent variables, 12 different combinations of 14 factors were examined, including the traditional climate-based drought indicators, satellite-derived vegetation indices, and other biophysical variables. The final model was established by fully describing drought properties with the smaller average error (relative error) and larger correlation coefficients. The ISDI can be used not only to monitor the main drought features, including precipitation anomalies and vegetation growth conditions but also to indicate the earth surface thermal and water content properties by incorporating temperature information. Then, the ISDI was used for drought monitoring from 2000 to 2009 in mid-eastern China. The results for 2006 (a typical dry year) demonstrate the effectiveness and capability of the ISDI for monitoring drought on both the large and the local scales. Additionally, the multiyear ISDI monitoring results were compared with the actual drought intensity using the agro-meteorological disaster data recorded at the agro-meteorological sites. The investigation results indicated that the ISDI confers advantages in the accuracy and spatial resolution for monitoring drought and has significant potential for drought identification in China.  相似文献   

17.
We propose a simple, spatially invariant and probabilistic year-round Empirical Standardized Soil Moisture Index (ESSMI) that is designed to classify soil moisture anomalies from harmonized multi-satellite surface data into categories of agricultural drought intensity. The ESSMI is computed by fitting a nonparametric empirical probability density function (ePDF) to historical time-series of soil moisture observations and then transforming it into a normal distribution with a mean of zero and standard deviation of one. Negative standard normal values indicate dry soil conditions, whereas positive values indicate wet soil conditions. Drought intensity is defined as the number of negative standard deviations between the observed soil moisture value and the respective normal climatological conditions. To evaluate the performance of the ESSMI, we fitted the ePDF to the Essential Climate Variable Soil Moisture (ECV SM) v02.0 data values collected in the period between January 1981 and December 2010 at South–Central America, and compared the root-mean-square-errors (RMSE) of residuals with those of beta and normal probability density functions (bPDF and nPDF, respectively). Goodness-of-fit results attained with time-series of ECV SM values averaged at monthly, seasonal, half-yearly and yearly timescales suggest that the ePDF provides triggers of agricultural drought onset and intensity that are more accurate and precise than the bPDF and nPDF. Furthermore, by accurately mapping the occurrence of major drought events over the last three decades, the ESSMI proved to be spatio-temporal consistent and the ECV SM data to provide a well calibrated and homogenized soil moisture climatology for the region. Maize, soybean and wheat crop yields in the region are highly correlated (r > 0.82) with cumulative ESSMI values computed during the months of critical crop growing, indicating that the nonparametric index of soil moisture anomalies can be used for agricultural drought assessment.  相似文献   

18.
高分四号卫星在干旱遥感监测中的应用   总被引:3,自引:3,他引:0  
聂娟  邓磊  郝向磊  刘明  贺英 《遥感学报》2018,22(3):400-407
高分四号(GF-4)是国家高分辨率对地观测系统重大专项天基系统中的一颗地球同步卫星,为探索GF-4号卫星在大面积干旱监测中的应用,本文对该卫星在快速监测大面积干旱方面的应用能力进行了初步探讨。以2016年内蒙古自治区巴林左旗和巴林右旗地区严重旱灾为例,利用NDVI差值对该区域的干旱情况进行了监测,并与MODIS NDVI产品进行对比分析,得到了研究区内2016年干旱分布情况,结果表明其总体趋势与MODIS NDVI产品一致,且细节信息更加丰富。本文主要是GF-4卫星数据结合GF-1卫星数据对内蒙部分干旱区域进行监测和分析,体现了国产高分辨率卫星数据,尤其是GF-4卫星数据,对提高中国突发灾害的应对能力具有重要意义。  相似文献   

19.
针对鄂尔多斯高原植被覆盖变化受干旱胁迫的状况,该文结合降水和气温的协同变化,以2000-2012年生长季的MODIS-NDVI数据和同期降水、温度和帕尔默干旱指数为依据,采用线性趋势分析、标准偏差分析和相关性分析等方法,对鄂尔多斯高原植被与气候变化的相关关系和干旱异常变化对植被动态的影响进行了研究.结果表明:鄂尔多斯高原生长季及季节(春季、夏季和秋季)植被归一化植被指数主要受降水的控制和干旱的制约,秋季归一化植被指数更多地受到夏季干旱的影响.与气象因子的空间相关分析表明,春季温度上升有利于研究区北部归一化植被指数像元的增加.在荒漠草原和沙漠地区,夏季干旱与归一化植被指数的相关关系最强.秋季降水对典型草原归一化植被指数的提升显著.  相似文献   

20.
Numerous efforts have been made to develop various indices using remote sensing data such as normalized difference vegetation index (NDVI), vegetation condition index (VCI) and temperature condition index (TCI) for mapping and monitoring of drought and assessment of vegetation health and productivity. NDVI, soil moisture, surface temperature and rainfall are valuable sources of information for the estimation and prediction of crop conditions. In the present paper, we have considered NDVI, soil moisture, surface temperature and rainfall data of Iowa state, US, for 19 years for crop yield assessment and prediction using piecewise linear regression method with breakpoint. Crop production environment consists of inherent sources of heterogeneity and their non-linear behavior. A non-linear Quasi-Newton multi-variate optimization method is utilized, which reasonably minimizes inconsistency and errors in yield prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号