首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
一种新的软件GPS静态接收机频域跟踪方法   总被引:1,自引:0,他引:1  
曲江华  袁洪  宁百齐 《测绘学报》2005,34(4):312-316
设计一种基于FFT的软件GPS静态用户接收机频域跟踪方案.利用GPS导航电文调制周期为20个C/A码周期的特性,将块叠加(Block Addition)频域捕获的思想应用于GPS信号频域跟踪,从而大幅度节约计算量,为实时跟踪创造条件.  相似文献   

2.
采用基于快速傅里叶变换(FFT)的并行码相位搜索捕获算法实现GPS信号的捕获,根据相位关系对载波频率进行精化,使其满足跟踪模块的需求。在分析算法的基础上,通过对模拟信号和实测数据进行捕获实验,实现了对载波频率的精化,获得精确频率可直接用于后续跟踪环路。  相似文献   

3.
软件接收机通道模块设计体现着软件算法的核心,接收机运行控制设计决定着整个软件系统的循环。在接收机通道状态分析的基础上设计实现了GPS单频软件接收机,并对自行开发的C/A码信号仿真器产生的数字中频信号进行了实验,分析了捕获和跟踪状态中通道重要参数的时间序列关系,验证了时域串行搜索捕获策略、超前—滞后非相干码跟踪环路以及直方图位同步算法的正确性和通道模块结构设计的合理性。  相似文献   

4.
在分析基于软件无线电全球定位系统(GPS)接收机结构的基础上,研究了GPS单频软件接收机的捕获和跟踪算法,并基于MATLAB平台在PC上仿真了GPS单频软件接收机样机。信号捕获采用基于快速傅里叶变换(FFT)的并行码相位搜捕算法;信号跟踪联合使用超前滞后非相干延迟锁定环和科斯塔斯环的跟踪环结构。采用实测数据对信号捕获、跟踪算法进行了分析和验证。结果表明:仿真的GPS单频软件接收机具备基本的基带信号处理功能。  相似文献   

5.
An ActiveX GPS control is presented which can be used to develop software applications with GPS functionality. It translates the NMEA 0183 interface GPS instructions and triggers event procedures which are used by applications to access the GPS data. It provides position data in the form of geographic coordinates as well as Universal Transverse Mercator (UTM) projected coordinates. This control is recommended for the development of general purpose GPS-enabled applications which do not require a high level of accuracy. A Visual Basic project is also included to demonstrate the use of various features of this control. Finally, some real-time software applications are discussed which have been developed using this control. These applications include static point averaging; path tracking; and imagery-based position mapping.  相似文献   

6.
辅助全球定位系统通过蜂窝网基站提供给A-GPS接收机捕获辅助信息、辅助星历、时间与概略坐标,解决了微弱信号下的定位问题。从信号捕获到完成跟踪,解码导航电文需要经历相关锁定、相位锁定、比特同步、帧同步等过程,在信号很弱以至于无法实现帧同步、不能解调卫星TOW的情况下,常规定位算法无法实现定位。文中提出多普勒与伪码相位结合的A-GPS快速定位算法,利用伪码相位值进行伪距重构法消去整数毫秒伪距中隐含的公共误差,利用多普勒定位提供的初值保证初始位置和时间误差在0.5光毫秒以内,实现了粗时间、粗位置辅助下利用多普勒与伪码相位值的A-GPS快速定位。  相似文献   

7.
为了满足高动态用户及强干扰条件下的应用需求,提出了一种基于卫星信号矢量跟踪的SINS/GPS深组合导航方法,设计了基于FPGA硬件平台的实施方案。利用组合卡尔曼滤波器反馈回路取代了传统接收机中独立、并行的跟踪环路,能够同时完成所有可视卫星信号的跟踪和导航信息处理;通过矢量跟踪算法对所有可视卫星信号进行集中处理,能够增强跟踪通道对信号载噪比变化的适应能力,从而提高接收机在强干扰或信号中断条件下的跟踪性能;根据SINS导航参数和星历信息推测GPS伪码相位和多普勒频移等参数,用以辅助卫星信号的捕获和跟踪,能够大大缩短接收机的搜索捕获时间,并增强接收机在高动态条件下的跟踪性能。基于矢量跟踪的深组合方法不仅在GPS信号短暂中断期间,能够保证系统的导航精度和可靠性,而且在强干扰环境中能够维持较好的伪码相位和载波频率跟踪性能。  相似文献   

8.
Benefits of Software GPS Receivers for Enhanced Signal Processing   总被引:8,自引:0,他引:8  
In this article, the architecture of a software Global Positioning System (GPS) receiver is described and an analysis is included of the performance of a software GPS receiver when tracking the GPS signals in challenging environments. Results are included that demonstrate the advantage of the software GPS receiver in tracking the GPS signals in low signal-to-noise or jamming scenarios. Various current and previous applications of the software GPS receiver are also described. ? 2000 John Wiley & Sons, Inc.  相似文献   

9.
Automated GPS processing for global total electron content data   总被引:4,自引:2,他引:4  
A software package known as MIT Automated Processing of GPS (MAPGPS) has been developed to automate the processing of GPS data into global total electron density (TEC) maps. The goal of the MAPGPS software is to produce reliable TEC data automatically, although not yet in real time. Observations are used from all available GPS receivers during all geomagnetic conditions where data has been successfully collected. In this paper, the architecture of the MAPGPS software is described. Particular attention is given to the algorithms used to estimate the individual receiver biases. One of the largest sources of error in estimating TEC from GPS data is the determination of these unknown receiver biases. The MAPGPS approach to solving the receiver bias problem uses three different methods: minimum scalloping, least squares, and zero-TEC. These methods are described in detail, along with their relative performance characteristics. A brief comparison of the JPL and MAPGPS receiver biases is presented, and a possible remaining error source in the receiver bias estimation is discussed. Finally, the Madrigal database, which allows Web access to the MAPGPS TEC data and maps, is described.  相似文献   

10.
GPS中频信号快速捕获技术分析   总被引:5,自引:3,他引:2  
为解决GPS中频信号快速捕获问题,在介绍GPS码相位和载频信号捕获原理的基础上,重点阐述了基于FFT的并行GPS中频信号快速捕获方法,同时在非相干累加、接收信噪比、先验信息等方面分析了提高中频信号快速捕获的可能性,最后利用一组GPS实测数据对上述分析进行了的仿真计算。仿真结果表明基于FFT技术的中频信号快速捕获方法具有抗干扰、捕获速度快和检测低信噪比信号的能力,可以满足GPS软件接收机定位的要求。  相似文献   

11.
在分析基于软件无线电GPS接收机结构的基础上,在基于PC软件接收机信号处理系统上采用模拟的数字中频信号,对软件接收机信号捕获、跟踪算法进行了分析和验证。信号捕获阶段给出了基于快速傅利叶变换FFT的快速搜索原理和结果,并采用跟踪阶段Q支路信号的统计特性分析了捕获门限和误警概率的关系,给出了一种捕获门限的优化方法;跟踪阶段对系统采用的数字锁相环(PLL)进行了分析,并对I/Q解调原理进行了解析和验证。  相似文献   

12.
Software-based global positioning system (GPS) receivers perform all the baseband signal processing and the high level functions on a general purpose processor. The heavy computational loads of the signal correlation in baseband processing make it difficult for software receivers to operate in real time. In order to improve the real-time performance, an enhanced bit-wise parallel algorithm has been developed in this study. The enhanced algorithm has been implemented and tested in a 12 channels real-time GPS software receiver. The system consists of a radio frequency front end, a data acquisition board and software that runs on a laptop with a Pentium-M 1.5 GHz processor running the Window® XP operating system. The data acquisition board packs the 2-bit intermediate frequency samples with a 2-bit in/8-bit out shift register and transfers the packed samples to laptop through a USB port. The software running on the laptop performs all the baseband and navigation processing in real time. The test results show that the enhanced algorithm significantly improves the real-time performance of the software receiver by reducing the computational operations for signal correlation by 50% compared with the existing bit-wise parallel algorithm. Furthermore, the enhanced algorithm also reduces the amount of required memory for storing data for signal correlation.  相似文献   

13.
A CE-5T1 spacecraft completed a high-speed skip re-entry to the earth after a circumlunar flight on October 31, 2014. In addition to the strapdown inertial navigation system (SINS), a lightweight GPS receiver with rapid acquisition was developed as a navigation sensor in the re-entry capsule. The GPS receiver effectively solved the poor accuracy problem of long-term navigation using only the SINS. In contrast to ground users and low-earth-orbit spacecraft, numerous factors, including high altitude and kinetic characteristics in high-speed skip re-entry, are important for GPS positioning feasibility and were presented in accordance with the flight data. GPS solutions started at nearly 4900 km orbital altitude during the phases of re-entry process. These solutions were combined by an inertial measurement unit in a loosely coupled integrated navigation method and SINS navigation initialization. A simplified GPS/SINS navigation filter for limited resources was effectively developed and implemented on board for spacecraft application. Flight data estimation analyses, including trajectory, attitude, position distribution of GPS satellite, and navigation accuracy, were presented. The estimated accuracy of position was better than 42 m, and the accuracy of velocity was better than 0.1 m/s.  相似文献   

14.
This article is based on a position paper presented at the IGS Network, Data and Analysis Center Workshop 2002 in Ottawa, Canada, 8–11 April 2002, and introduces the IGS Ionosphere Working Group (Iono_WG). Detailed information about the IGS in general can be found on the IGS Central Bureau Web page: http://igscb.jpl.nasa.gov. The Iono_WG commenced working in June 1998. The working group's main activity currently is the routine production of ionosphere Total Electron Content (TEC) maps with a 2-h time resolution and daily sets of GPS satellite and receiver hardware differential code bias (DCB) values. The TEC maps and DCB sets are derived from GPS dual-frequency tracking data recorded with the global IGS tracking network. In the medium- and long-term, the working group intends to refine algorithms for the mapping of ionospheric parameters from GPS measurements and to realize near–real–time availability of IGS ionosphere products. The paper will give an overview of the Iono_WG activities that include a summary of activities since its establishment, achievements and future plans. Electronic Publication  相似文献   

15.
刘毓  邹星 《测绘科学》2013,38(1):133-135
本文给出了GPS/GLONASS双模接收机的总体设计方案,重点对弱信号环境下的接收机信号捕获进行了讨论,采用并行码相位搜索方法和改进的循环相关算法分别对GLONASS信号和GPS信号进行捕获;并利用真实数据对双模接收机性能进行了仿真研究,重点对接收机捕获弱信号的能力,以及在不同信噪比和不同累加数据长度下的捕获概率进行了讨论,结果表明该双模接收机在不需要较长数据长度的情况下能够捕获低信噪比环境下的卫星导航信号,提高了接收机的灵敏度。  相似文献   

16.
An acquisition method is proposed which saves processing time and rapidly finds the Global Positioning System (GPS) satellite with high receiving power. The idea is to combine two or more Coarse/Acquisition (C/A) codes to process acquisition, thus called “multi-C/A code acquisition method.” The proposed method will change the procedure of conventional Fast Fourier Transform acquisition slightly, and it has the capabilities to combine with other acquisition methods to perform signal acquisition simultaneously. In order to show how this multi-C/A code acquisition method may improve the Time To First Fix at the cold start, the real raw Intermediate Frequency data from a GPS software receiver are used to validate this multi-C/A code acquisition method. The results show that this method can save at least 23% processing time and it is able to detect the satellite more rapidly.  相似文献   

17.
Ionospheric scintillations are caused by time- varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between ~50°N and ~80°N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sj{\sigma_{\varphi}} represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise ‘equal weights’ model. For pseudorange processing, relative weights were com- puted, so that a ‘scintillation-mitigated’ solution could be performed and compared to the (non-mitigated) ‘equal weights’ solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.  相似文献   

18.
为满足组合导航系统在高动态环境下的性能要求,设计基于矢量跟踪的GNSS/SINS相干深组合导航方法。利用矢量跟踪环路将所有可视卫星的跟踪和导航解算融为一体,增强通道间的辅助;高动态对载波跟踪影响更大,在通道预滤波中将码环载波环分别用独立的滤波器处理,组合滤波中采用通道间差分降低滤波状态维数,提高计算效率。引入惯导的加速度辅助本地信号参数预测,较精确地测量卫星视线方向的加速度,减小接收机在高动态时段的剩余动态,提高本地信号参数的预测精度。基于矢量跟踪软件接收机搭建相干深组合仿真系统,实验表明该方法在高动态等环境下能提高信号跟踪性能,改善系统的精度、可靠性。   相似文献   

19.
为了解决在强干扰环境下由于GPS卫星信号被遮挡而无法定位的问题,从灰色理论(GT)的角度探讨了接收机的钟差序列,提出一种利用灰色理论的钟差预测模型辅助GPS定位的方法。对预测模型的基本思想和具体实现步骤作了详细的介绍,并且将钟差预测值引入到GPS接收机中,实现信号遮挡情况下GPS接收机的定位解算。通过对实测数据的验证分析表明,该钟差预测模型对钟差序列有很好的预测效果,能够在仅有3颗可观测卫星的情况下实现接收机的定位解算。  相似文献   

20.
Architectures of Software GPS Receivers   总被引:6,自引:0,他引:6  
There are various applications in which a Global Positioning System (GPS) sensor only down-converts and digitizes the received GPS signal and sends the digitized data to a processor, where the processor software performs all the correlation, search/track operations, navigation solution, and so on. Among the applications are military and commercial ones (e. g., GPS(Communication handheld sets, people tracking systems). A major problem with the Software GPS Receiver is the large computing resources required for correlation or acquisition of the GPS signal. In this article, several possible approaches for reducing computing resources will be introduced and analyzed. It will be shown that the performance of the GPS software design strongly depends on the features of the computer hardware. Implementations will be described on the TMS320C6201 processor and the Pentium II. Experimental results will be demonstrated by processing of real GPS signals. A complete 16-channel GPS receiver was implemented on the single TMS320C6201 processor in real-time mode and on the Pentium II processor with a duty cycle of about 50%. ? 2000 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号