首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The tables of systematic differences between the FK4 catalogue and the GC and N30 catalogues, published by Brosche et al. (1964) are evaluated for the epoch of 1970.0. Mean star positions in the three catalogue system are updated to the epoch of 1970.0 and systematic corrections are applied to the GC and N30 positions. Residuals are obtained before and after systematic corrections, and these residuals are compared. Results show that most of the systematic differences between the three fundamental catalogue systems are eliminated if tabulated corrections are applied to the GC and N30 mean positions of stars.  相似文献   

2.
3.
Very Long Baseline Interferometry (VLBI) plays a unique and fundamental role in the maintenance of the global (terrestrial and celestial) reference frames, which are required for precise positioning in many research areas such as the understanding and monitoring of global changes, and for space missions. The International VLBI Service for Geodesy and Astrometry (IVS) coordinates the global VLBI components and resources on an international basis. The service is tasked by the International Association of Geodesy (IAG) and International Astronomical Union (IAU) to provide products for the realization of the Celestial Reference Frame (CRF) through the positions of quasars, to deliver products for the maintenance of the terrestrial reference frame (TRF), such as station positions and their changes with time, and to generate products describing the rotation and orientation of the Earth. In particular, VLBI uniquely provides direct observations of nutation parameters and of the time difference UT1-UTC. This paper summarizes the evolution and current status of the IVS. It points out the activities to improve further on the product quality to meet future service requirements.  相似文献   

4.
数字天顶摄影仪中星象匹配识别与匹配星表编制   总被引:1,自引:0,他引:1  
在利用数字天顶摄影仪通过天文测量确定重力垂线偏差的工作中,需要建立高精度高密度的恒星星表,实现CCD观测星象与星表中恒星匹配识别。本文提出了一种新的控制三角形匹配算法,利用CCD影像平面中星象与天顶切平面中恒星的三角形角、三角形边长及星等信息作为判定条件,快速准确实现CCD影像平面中星象与切平面中恒星的控制星和参考星识别匹配。根据数字天顶摄影仪CCD星象观测能力,通过对 Hipparcos、Tycho-2星表处理,分别编制了数字天顶摄影仪控制星和参考星匹配星表数据库。0.3s内完成一幅3073×2048大小的CCD实测图像星象准确匹配识别。  相似文献   

5.
随着甚长基线干涉测量(VLBI)、卫星激光测距(SLR)、激光测月(LLR)、全球卫星导航系统(GNSS)、多里斯系统(DORIS)等多种空间大地测量手段的使用,地球自转参数(ERP)的测量精度不断提高,为航天器导航、深空探测等诸多领域提供了高精度的国际天球参考系(ICRS)和国际地表参考系统(ITRS)之间的转换参数. 以国际地球自转与参考系服务发布的C04序列为基础序列,选取500天ERP序列,分析不同测量手段得到的ERP数据的误差分布情况,为研究利用不同数据之间的一致性进行精度检核的可行性及精度水平提供数据基础,同时也为ERP预报提供更多的数据选择.   相似文献   

6.
Relativity, or gravitational physics, has widely entered geodetic modelling and parameter determination. This concerns, first of all, the fundamental reference systems used. The Barycentric Celestial Reference System (BCRS) has to be distinguished carefully from the Geocentric Celestial Reference System (GCRS), which is the basic theoretical system for geodetic modelling with a direct link to the International Terrestrial Reference System (ITRS), simply given by a rotation matrix. The relation to the International Celestial Reference System (ICRS) is discussed, as well as various properties and relevance of these systems. Then the representation of the gravitational field is discussed when relativity comes into play. Presently, the so-called post-Newtonian approximation to GRT (general relativity theory) including relativistic effects to lowest order is sufficient for practically all geodetic applications. At the present level of accuracy, space-geodetic techniques like VLBI (Very Long Baseline Interferometry), GPS (Global Positioning System) and SLR/LLR (Satellite/Lunar Laser Ranging) have to be modelled and analysed in the context of a post-Newtonian formalism. In fact, all reference and time frames involved, satellite and planetary orbits, signal propagation and the various observables (frequencies, pulse travel times, phase and travel-time differences) are treated within relativity. This paper reviews to what extent the space-geodetic techniques are affected by such a relativistic treatment and where—vice versa—relativistic parameters can be determined by the analysis of geodetic measurements. At the end, we give a brief outlook on how new or improved measurement techniques (e.g., optical clocks, Galileo) may further push relativistic parameter determination and allow for refined geodetic measurements.  相似文献   

7.
Non-linear station motions in epoch and multi-year reference frames   总被引:5,自引:5,他引:0  
In the conventions of the International Earth Rotation and Reference Systems Service (e.g. IERS Conventions 2010), it is recommended that the instantaneous station position, which is fixed to the Earth’s crust, is described by a regularized station position and conventional correction models. Current realizations of the International Terrestrial Reference Frame use a station position at a reference epoch and a constant velocity to describe the motion of the regularized station position in time. An advantage of this parameterization is the possibility to provide station coordinates of high accuracy over a long time span. Various publications have shown that residual non-linear station motions can reach a magnitude of a few centimeters due to not considered loading effects. Consistently estimated parameters like the Earth Orientation Parameters (EOP) may be affected if these non-linear station motions are neglected. In this paper, we investigate a new approach, which is based on a frequent (e.g. weekly) estimation of station positions and EOP from a combination of epoch normal equations of the space geodetic techniques Global Positioning System (GPS), Satellite Laser Ranging (SLR) and Very Long Baseline Interferometry (VLBI). The resulting time series of epoch reference frames are studied in detail and are compared with the conventional secular approach. It is shown that both approaches have specific advantages and disadvantages, which are discussed in the paper. A major advantage of the frequently estimated epoch reference frames is that the non-linear station motions are implicitly taken into account, which is a major limiting factor for the accuracy of the secular frames. Various test computations and comparisons between the epoch and secular approach are performed. The authors found that the consistently estimated EOP are systematically affected by the two different combination approaches. The differences between the epoch and secular frames reach magnitudes of $23.6~\upmu \hbox {as}$ (0.73 mm) and $39.8~\upmu \hbox {as}$ (1.23 mm) for the x-pole and y-pole, respectively, in case of the combined solutions. For the SLR-only solutions, significant differences with amplitudes of $77.3~\upmu \hbox {as}$ (2.39 mm) can be found.  相似文献   

8.
Earth orientation parameters (EOPs) provide a link between the International Celestial Reference Frame (ICRF) and the International Terrestrial Reference Frame (ITRF). Natural geodynamic processes, such as earthquakes, can cause the motion of stations to become discontinuous and/or non-linear, thereby corrupting the EOP estimates if the sites are assumed to move linearly. The VLBI antenna at the Gilcreek Geophysical Observatory has undergone non-linear, post-seismic motion as a result of the Mw=7.9 Denali earthquake in November 2002, yet some VLBI analysts have adopted co-seismic offsets and a linear velocity model to represent the motion of the site after the earthquake. Ignoring the effects of the Denali earthquake leads to error on the order of 300–600 μas for the EOP, while modelling the post-seismic motion of Gilcreek with a linear velocity generates errors of 20–50 μas. Only by modelling the site motion with a non-linear function is the same level of accuracy of EOP estimates maintained. The effect of post-seismic motion on EOP estimates derived from the International VLBI Service IVS-R1 and IVS-R4 networks are not the same, although changes in network geometries and equipment improvements have probably affected the estimates more significantly than the earthquake-induced deformation at Gilcreek.  相似文献   

9.
We examine the contribution of the Doppler Orbit determination and Radiopositioning Integrated by Satellite (DORIS) technique to the International Terrestrial Reference Frame (ITRF2005) by evaluating the quality of the submitted solutions as well as that of the frame parameters, especially the origin and the scale. Unlike the previous versions of the ITRF, ITRF2005 is constructed with input data in the form of time-series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth orientation parameters (EOPs), including full variance–covariance information. Analysis of the DORIS station positions’ time-series indicates an internal precision reaching 15 mm or better, at a weekly sampling. A cumulative solution using 12 years of weekly time-series was obtained and compared to a similar International GNSS Service (IGS) GPS solution (at 37 co-located sites) yielding a weighted root mean scatter (WRMS) of the order of 8 mm in position (at the epoch of minimum variance) and about 2.5 mm/year in velocity. The quality of this cumulative solution resulting from the combination of two individual DORIS solutions is better than any individual solution. A quality assessment of polar motion embedded in the contributed DORIS solutions is performed by comparison with the results of other space-geodetic techniques and in particular GPS. The inferred WRMS of polar motion varies significantly from one DORIS solution to another and is between 0.5 and 2 mas, depending on the strategy used and in particular estimating or not polar motion rate by the analysis centers. This particular aspect certainly needs more investigation by the DORIS Analysis Centers.  相似文献   

10.
通过引进章动坐标系相对惯性参照系的转动角速度随时间的变化 ,导出了一个可同时解出章动和极移的地球自转方程 ,用这个方程可同时研究地球的强迫和自由转动。与现行研究地球自转的惯用方法相比 ,该方法综合性强 ,易于理解。  相似文献   

11.
王国权  鲍艳 《测绘学报》2022,51(10):2107-2116
区域参考框架是实现高精度区域大地形变观测和滑坡灾害长期监测的基础设施。结合活动地块的划分和长期的GNSS观测结果,笔者将我国大陆和海域初步划分为7个“刚性骨架地块”,简称“刚性地块”,拟建立覆盖我国陆海全域的区域参考框架系列:东北、华北、华南、西北、青藏、川滇及南海参考框架。本文介绍了从全球参考框架(IGS14)到区域参考框架的坐标转换方法,并例举了华北参考框架(NChina20)和华南参考框架(SChina20)在滑坡长期监测和滑坡初动自动识别领域的应用。  相似文献   

12.
Very long baseline interferometry (VLBI) tracking of satellites is a topic of increasing interest for the establishment of space ties. This shall strengthen the connection of the various space geodetic techniques that contribute to the International Terrestrial Reference Frame. The concept of observing near-Earth satellites demands research on possible observing strategies. In this paper, we introduce this concept and discuss its possible benefits for improving future realizations of the International Terrestrial Reference System. Using simulated observations, we develop possible observing strategies that allow the determination of radio telescope positions in the satellite system on Earth with accuracies of a few millimeters up to 1–2 cm for weekly station coordinates. This is shown for satellites with orbital heights between 2,000 and 6,000 km, observed by dense regional as well as by global VLBI-networks. The number of observations, as mainly determined by the satellite orbit and the observation interval, is identified as the most critical parameter that affects the expected accuracies. For observations of global positioning system satellites, we propose the combination with classical VLBI to radio sources or a multi-satellite strategy. Both approaches allow station position repeatabilities of a few millimeters for weekly solutions.  相似文献   

13.
针对地球动力学等对毫米级国际地球参考框架的需求,介绍了国际地球参考框架的最新研究进展,探讨了现今顾及测站非线性运动的国际地球参考框架的局限性,并在毫米级国际地球参考框架建立的方法和技术改进方面提出了一些见解,对高精度国际地球参考框架的实现具有一定的参考价值。  相似文献   

14.
ITRF2014通过对多种空间大地测量技术解的联合处理,在ITRF2014建立过程中首次对非线性运动建模,包括季节性变化的估计和震后形变(PSD)模型的应用。针对基准定义、输入数据和数据处理策略等方面介绍ITRF2014实现的基本情况,并对之前版本进行优化改进。  相似文献   

15.
Quality assessment of GPS reprocessed terrestrial reference frame   总被引:5,自引:1,他引:4  
The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.  相似文献   

16.
为了讨论大气对非刚体地球章动周年和半年项的贡献,本文将大气有效角动量(1980.0~1998.33)从地面参考系转换至空间参考系得到大气的天球有效角动量CEAM,低通滤波后用最小二乘方法拟合得到顺、逆向周年和半年项的振幅估计。  相似文献   

17.
1 IntroductionInmodernEarthrotationtheory ,threereferenceframesareusuallyused ,i.e .,thespatial (inertial)frameOξ1 ξ2 ξ3,theterrestrialframeOx1 x2 x3andthenutationframeOx01 x02 x03.Thenutationframedefinesacelestialephemerispole .Themotionofthiscelestialephemerispolew…  相似文献   

18.
Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they are known to be affected by systematic errors. This is usually done by estimating the parameters of a linearized similarity transformation which relates the quasi-instantaneous frames to a long-term frame such as the International Terrestrial Reference Frame (ITRF). It is well known that non-linear station motions can partially alias into these parameters. We discuss in this paper some procedures that may allow reducing these aliasing effects in the case of the GPS techniques. The options include the use of well-distributed sub-networks for the frame transformation estimation, the use of site loading corrections, a modification of the stochastic model by downweighting heights, or the joint estimation of the low degrees of the deformation field. We confirm that the standard approach consisting of estimating the transformation over the whole network is particularly harmful for the loading signals if the network is not well distributed. Downweighting the height component, using a uniform sub-network, or estimating the deformation field perform similarly in drastically reducing the amplitude of the aliasing effect. The application of these methods to reprocessed GPS terrestrial frames permits an assessment of the level of agreement between GPS and our loading model, which is found to be about 1.5 mm WRMS in height and 0.8 mm WRMS in the horizontal at the annual frequency. Aliased loading signals are not the main source of discrepancies between loading displacement models and GPS position time series.  相似文献   

19.
利用空间大地测量数据探测地球膨胀效应   总被引:5,自引:2,他引:3  
地球自转服务局(IERS)采用多种高精度的空间探测技术综合解算得到的国际地球参考框架(ITRF)是国际上公认的精度高、稳定性好的参考框架。为了研究地球的膨胀或收缩效应,本文采用ITRF2000的站坐标和速度,利用Delaunay算法生成的三角网逼近地球形体,计算出了地球的体积变化。  相似文献   

20.
在选用高精度基本星表的基础上,分析了导航星的选取方法及其分布特征。为了利用导航星的观测位置信息,给出了从星表平位置到星心视位置的高精度转换方法。基于分区法制定了导航星库,并给出了存储及读取方法,对该星库的访问具有简单、快速、占用资源少等优点,适合星载使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号