首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 94 毫秒
1.
青藏高原植被NDVI对气候因子响应的格兰杰效应分析   总被引:3,自引:1,他引:3  
多变的气候和复杂的地理环境使得青藏高原植被对气候变化响应敏感,因此分析高原植被与气候因子之间的动态关系对气候变化研究和生态系统管理具有重要意义。论文基于1982—2012年青藏高原气象数据(气温、降水)以及GIMMS NDVI3g遥感数据,在像素级别上运用格兰杰因果关系检验方法,在月尺度和季节尺度上分析了高原植被NDVI(主要是草原)与平均气温、降水量之间的响应情况及因果关系。研究表明:① 月尺度上NDVI与平均气温之间、NDVI与降水量之间的时序平稳性比例高于季节尺度,月尺度下达到平稳性的植被区域分别占99.13%和98.68%,季节尺度下分别占64.01%和71.97%;② 月尺度下高原平均气温和降水量对NDVI影响的滞后期都集中在第12~13个月,荒漠草原、典型草原和草甸3种植被类型的滞后期一致,季节尺度下平均气温和降水量对NDVI影响的滞后期主要分布在第3~4和第6个季度,3种植被类型的滞后期差异性较大;③ 月尺度下,青藏高原约98.95%的植被覆被区的平均气温是引起NDVI变化的格兰杰原因,反之,大部分地区(约89.05%,除高原东南区域)内NDVI也是引起平均气温变化的格兰杰原因;季节尺度下,青藏高原中部以外植被区域(约92.03%)内的平均气温是引起NDVI变化的格兰杰原因,而在东部和西部部分地区(约50.55%)中NDVI也是引起平均气温变化的格兰杰原因;④ 月尺度下,高原东北和西北地区(约72.05%)内的降水量是引起NDVI变化的格兰杰原因,大部分地区(约94.86%,除东南部少量区域)中NDVI是引起降水量变化的格兰杰原因;季节尺度下,高原东南部(约61.43%)地区内的降水量是引起NDVI变化的格兰杰原因,高原中东部地区(约48.98%)中NDVI是引起降水量变化的格兰杰原因。总之,高原植被NDVI与气温、降水的相互作用显著,彼此均可构成格兰杰因果效应,但总体上气候因子的影响程度大于植被的反馈作用,月尺度的效应区域大于季节尺度的效应区域。  相似文献   

2.
1982-2009 年珠穆朗玛峰自然保护区植被指数变化   总被引:6,自引:2,他引:4  
植被指数是指示植被变化的重要指标, 本研究基于1982-2009 年珠穆朗玛峰自然保护区(简称珠峰地区)植被指数(NDVI)时间序列数据、土地覆被和野外调查等数据, 采用时序变化趋势和空间分析法, 对珠穆朗玛峰地区植被的时空变化过程及保护区成效进行了定量分析。研究表明:①珠峰地区NDVI分布的总特征是南部和北部高, 中部低。②1982-2009 年珠峰地区NDVI年际变化趋势和空间异质性十分明显:1982-1997 年, 珠峰地区NDVI总体上呈显著上升趋势, 北部地区增幅较大;1998-2009 年, NDVI总体下降(56.96%的NDVI呈下降趋势), 其中, 珠峰地区中部和北部的NDVI下降最为明显, 而南部核心保护区森林和灌丛的NDVI则呈显著上升趋势, 且变化幅度较大。③长时间序列植被指数变化的过程和空间差异性推断:1998 年以来, 天然林保护等生态工程促使珠峰地区保护效果更加明显。  相似文献   

3.
基于多源遥感数据集的近30a西北地区植被动态变化研究   总被引:2,自引:0,他引:2  
基于重构后的AVHRR GIMMS NDVI、MODIS NDVI、GLC 2000数据产品和研究区的128个气象站点的气温、降水数据,利用回归分析、相关性分析法,研究了西北地区近30 a(1984-2013年)以来不同植被NDVI的时空变化及其与气候的相关性。结果表明:(1)研究时段内,西北地区植被NDVI变化整体上呈上升趋势,将整个研究分为两个时段,1984-1997年呈小幅上升趋势,且波动起伏较大,最大值在1993年,最小值出现在1995年;1997-2013年也呈波动上升趋势,且上升趋势大于前一阶段。(2)空间上,西北地区植被NDVI变化存在明显的区域差异,大部分区域植被NDVI变化显著性较弱,昆仑山、塔里木盆地北部、祁连山、青海的中东西部、甘肃东部、陕西北部等地区植被NDVI显著增加;阿尔泰山、天山、伊犁哈萨克自治州等干旱地区植被NDVI下降趋势明显。(3)除甘肃的祁连山、青海东南部、陕西的秦岭等地植被NDVI的变化主要受气温的驱动外,西北地区植被NDVI变化与气温整体上呈弱相关,干旱半干旱地区植被与气温呈负相关;除甘肃南部、祁连山西段和陕西中部等一些年降水量较多以及灌溉农业区或草地以外,西北地区植被与降水呈较强正相关,降水是影响植被变化的主要自然因素;(4)不同植被类型NDVI的变化具有时空差异性,且与气温和降水的相关性不尽相同,与气温由强到弱:耕地灌丛草地沼泽湿地林地;与降水由强到弱:耕地草地灌丛林地沼泽湿地。  相似文献   

4.
中国大陆中纬度带不同等级降水的变化特征   总被引:1,自引:0,他引:1  
为研究中国大陆中纬度带不同等级降水的变化特征,利用筛选后的100个测站1960-2014年的日降水量数据,根据站点降水趋势进行区域划分,根据中国不同年降水量对应的降水等级进行强度划分,在此基础上对中国大陆中纬度带不同等级降水分地区、分季节做了详细分析。结果表明:(1)中国大陆中纬度带东、西部降水存在很大的地域性差异,降水类型以中等以下强度降水过程为主且暴雨和大雨主要发生在夏季。(2)全球变暖大背景下,20世纪80年代中期东、西部降水均出现转折,西部降水由少变多,暖湿化加剧;东部降水减少,由湿变干;东、西部降水反相变化。(3)近几十年西部暖湿化加剧的主要表现形式为不同等级年降水量显著增加,东部降水减少的主要表现形式为年暴雨和大雨量减少。(4)东、西部不同等级年降水日数对相应等级年降水量起着决定性作用。(5)东、西部降水日数变化引起的降水量变化远大于降水强度变化引起的降水量变化且东部降水强度对总降水量的贡献较西部大。  相似文献   

5.
近50年四川盆地汛期极端降水事件的时空演变   总被引:17,自引:4,他引:13  
利用四川盆地1961-2006年145个台站汛期的逐日降水资料,分析了该地区汛期极端降水事件的时空演变特征,结果表明:该地区汛期极端降水事件的发生频次分布与降水量分布差异较大,由西向东呈阶梯状递减趋势;川西高原与四川盆地之间以及盆地东西部之间的反位相变化是川渝地区汛期极端降水事件发生频次最主要的两个空间异常模态:该地区汛期极端降水事件发生频次的空间分布可以分为8个区;分别是四川盆地中部区、东部区、南部区、西部区、川西高原西部区、中部区、川西南山地区和重庆东部区;从长期变化趋势来看,汛期极端降水事件发生频次除在四川盆地西部区和重庆东部区分别呈较弱的减少和增长趋势以外,在其余各区的线性趋势都较为明显,其中四川盆地东部区、川西南山地区、川西高原西部和中部区表现为增长,四川盆地中部和南部区表现为减少;从气候因子分析看,汛期西太平洋副高位置的南北变化、东亚以及南亚季风的强弱变化分别对四川盆地东部区、中部区以及西部区的极端降水事件存在显著影响.  相似文献   

6.
1982-2006 年中国东部春季植被变化的区域差异   总被引:10,自引:1,他引:9  
分析了中国东部1982-2006 年4-5 月归一化差值植被指数(NDVI) 的空间格局和变化趋势空间分布,通过聚类分析辨识了植被活动变化过程的主要模态,并探讨了他们与温度和降水变化的相关关系。结果表明:(1) 多年平均的春季植被活动呈现南强北弱的分布特征,由强到弱的过渡带大约位于34°~39°N;(2) 1982-2006 年,华北平原、呼伦贝尔草原和洞庭湖平原的春季植被活动呈显著增强的趋势,其中华北平原NDVI 增速高达0.03/10 年(r2 = 0.52;p <0.001),长三角和珠三角地区则呈显著减弱的趋势,其中长三角地区NDVI减速达-0.016/10 年(r2 = 0.24;p = 0.014);(3) 1982-2006 年春季植被活动变化过程的区域差异鲜明,并呈现层次性特征,首先是长三角和珠三角与其他地区的差异,前者呈减弱趋势,后者呈增强趋势,其次是呼伦贝尔草地、华北以及江南—华南地区与东北地区、内蒙古东部和东南部及长江下游地区的差异,前者持续增强,后者以1998 年为分界点先增强后减弱,再次是各个模态年际变率的差异;(4) 半湿润—半干旱的草地和农田区植被活动与降水量变化显著正相关,半湿润—湿润的森林区植被活动与温度变化显著正相关,温度或者降水最高能解释NDVI 60%的方差。  相似文献   

7.
1982~2013年青藏高原高寒草地覆盖变化及与气候之间的关系   总被引:7,自引:2,他引:5  
陆晴  吴绍洪  赵东升 《地理科学》2017,37(2):292-300
利用GIMMS NDVI数据和地面气象站台观测数据,对青藏高原1982~2013年高寒草地覆盖时空变化及其对气象因素的响应进行研究,结果表明:青藏高原高寒草地生长季NDVI表现为从东南到西北逐渐减少的趋势,近32 a来,整个高原草地生长季NDVI呈上升趋势,增加速率为0.000 3/a (p<0.05);高寒草地生长季NDVI年际变化具有空间异质性,整体为增加趋势,呈增加趋势的面积约占研究区域面积的75.3%,其中显著增加的占26.0% (p<0.05),类型主要为分布在青藏高原东北部地区的高寒草甸;比例为4.7%,草地类型主要为高寒草原,主要分布在高原西部地区;基于生态地理分区的分析显示,青藏高原草地与降水、温度的相关关系具有明显的空间差异,高寒草地生长季NDVI均值与降水呈显著正相关,对降水的滞后效应显著;高原东北部温度较高,热量条件较好,降水为高寒草地生长季NDVI变化的主导因子;东中部地区降水充沛,温度则为高寒草地生长的制约因子;南部地区降水和温度都较适宜,均与高寒草地生长季NDVI相关性显著(p< 0.05),共同作用于草地的生长;中部和西部地区,气候因子与高寒草地生长季NDVI关系均不显著。  相似文献   

8.
1981-2010年中国西北地区东部大气可降水量的时空变化特征   总被引:2,自引:1,他引:1  
利用1981-2010年NCEP/NCAR再分析资料以及同期西北地区东部58个气象站的日降水、蒸发资料,采用一种新的方法统计分析了该地区大气可降水量的时空分布特征,并对大气可降水量与实际降水量的相关性进行了分析。结果表明:西北地区东部大气可降水量空间分布极不均匀,无论年或季,均呈现为西北少东南多的分布特征。逐月大气可降水量分布呈单峰型,7月最大,1月最小; 近30年,西北地区东部年、各季大气可降水总量均呈微弱减少趋势,四季中夏季减少趋势最为显著,冬季不明显; 58个站点30年平均的实际降水量空间分布与大气可降水量分布基本一致,年际变化也呈微弱减少趋势; 大气可降水总量与实际降水量呈显著正相关,年平均相关系数为0.545,各季节中春季相关系数最大,秋季和冬季次之,夏季最小; 不同区域大气可降水总量与实际降水量的相关性因季节不同而不同,总体来说,甘肃东部、南部和陕西中部、南部相关性较高,大气可降水量对降水量的贡献较大; 将大气可降水量和降水日数结合起来,更能准确、客观地反映一段时间内总的大气可降水量分布情况。  相似文献   

9.
1982-1999年我国陆地植被活动对气候变化响应的季节差异   总被引:95,自引:6,他引:89  
朴世龙  方精云 《地理学报》2003,58(1):119-125
利用NOAA-AVHRR数据,以归一化植被指数 (NDVI) 作为植被活动的指标,研究中国1982~1999 年四季植被活动的变化,探讨植被活动对全球变化的主要响应方式。结果表明,18年来,中国植被四季平均NDVI均呈上升趋势。春季是中国植被平均NDVI上升趋势最为显著 (P<0.001)、增加速率最快的季节,每年平均增加1.3%;而秋季是NDVI上升趋势最不显著的季节 (P=0.075)。不同植被类型的季节平均NDVI的年变化分析表明,生长季的提前是中国植被对全球变化响应的最主要方式,但这种季节响应方式存在明显的区域性差异。夏季平均NDVI增加速率达到最大的地区主要分布在西北干旱区域和青藏高寒区域,而东部季风区域的植被主要表现为春季NDVI增加速率最大。  相似文献   

10.
本文基于1982-2006年连续25年的GIMMS AVHRR NDVI植被覆盖指数,采用了最大化NDVI均值法、与气温及降水变化的相关性和一元线性回归趋势分析法,对中国三北防护林工程区连续25年的植被覆盖时空变化特征进行了动态变化研究。结果表明:(1)近25年来,研究区植被NDVI平均值总体呈缓慢上升趋势,增速为每10年0.007;(2)研究区植被和气温、降水整体呈正相关关系,植被与降水正相关面积明显大于植被与气温正相关面积,说明降水是研究区植被生长的关键因子;(3)1982-2006年,研究区植被覆盖增加的区域主要分布在大兴安岭中、南部,小兴安岭中部,长白山东北段,燕山,辽西低山丘陵区,阿尔泰山,天山,祁连山东段,西北荒漠区东部和黄土高原丘陵沟壑区南部等;植被覆盖减少的区域主要是在大兴安岭两侧,呼伦贝尔高原西部,三江平原北部,科尔沁沙地南端,西北荒漠区南部和黄土高原丘陵沟壑区北部等。  相似文献   

11.
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre-lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi-cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

12.
青藏高原植被覆盖变化与降水关系   总被引:15,自引:6,他引:9  
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

13.
近35 a内蒙古阿拉善盟绿洲化过程遥感分析   总被引:1,自引:1,他引:0  
谢家丽  颜长珍  李森  李波 《中国沙漠》2012,32(4):1142-1147
 绿洲是干旱区人类活动的高度聚集区,它的时空格局变化对社会经济发展有着至关重要的影响。以1975年至2010年间5期Landsat系列数据为信息源,通过目视解译提取阿拉善盟绿洲信息,在GIS空间分析功能的支持下,对绿洲时空格局变化进行了分析。研究结果表明,阿拉善绿洲按面积大小分布依次为:阿拉善左旗、额济纳旗和阿拉善右旗;1975—2010年间,阿拉善绿洲面积变化总体上呈先缩小后增长的趋势;其中草地的变化量最大,占整个绿洲变化面积的64.92%;研究区绿洲主导景观类型为天然草地,并且35 a内没有发生变化。  相似文献   

14.
基于1982~2006年GIMMS NDVI数据集和地面气象台站观测数据,分析了青藏高原整个区域及各生态地理分区年均NDVI的变化趋势,并通过偏相关分析研究不同生态地理分区植被覆被变化对气温和降水响应的空间分异特征。研究表明:(1)近25年来,高原植被覆盖变化整体上趋于改善;高原东北部、东中部以及西南部湿润半湿润及部分半干旱地区植被趋于改善,植被覆盖较差的北部、西部半干旱和干旱地区呈现退化趋势;(2)高原植被变化与气温变化的相关性明显高于与降水变化的相关性,说明高原植被年际变化对温度变化更为敏感;(3)高原植被年际变化与气温和降水的相关性具有明显的区域差异,植被覆盖中等区域全年月NDVI与气温和降水的相关性最强,相关性由草甸向草原、针叶林逐步减弱,荒漠区相关性最弱。生长季植被覆盖变化与气温的相关性和全年相关性较一致,降水则不同,生长季期间高原大部分地区植被变化与降水相关性不显著。  相似文献   

15.
青海湖地区植被覆盖及其与气温降水变化的关系   总被引:9,自引:2,他引:7  
使用1981年到2003年月NDVI(归一化植被指数)资料,计算了青海湖地区植被覆盖度,分析了该地区植被覆盖度的历史演变,发现其值在增大,尤其是从1996到2003年,青海湖地区的植被覆盖度都为正距平,NDVI年平均增长率为1.07×10-3。四季的植被覆盖度均为增加趋势,夏季增加最多。月平均温度与月植被覆盖度、春夏季降水与夏秋季植被覆盖度显著正相关。因此,热量条件和春夏季降水是影响青海湖地区植被生长的关键性因素。  相似文献   

16.
中国东部植被NDVI对气温和降水的时空响应(英文)   总被引:8,自引:4,他引:4  
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year,spring,summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China.The results indicate that as a whole,the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China.Vegetation NDVI maxi...  相似文献   

17.
CUI Linli  SHI Jun 《地理学报》2010,20(2):163-176
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT–NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVI to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.  相似文献   

18.
基于1982—2015年的GIMMS NDVI3g+及同期气候数据,利用最大值合成法获得青藏铁路沿线直接影响区和生态背景区的年内NDVI最大值、年际NDVI平均值,对其进行了趋势分析、变异分析、气候相关分析和残差分析,部分结果用MODIS NDVI(2001—2018年)进行了验证。研究表明:① 青藏铁路年际NDVI高度响应气候变化和工程活动,即施工前主要响应气候变化,年际NDVI呈缓慢上升趋势;施工中主要响应工程活动,年际NDVI呈显著下降趋势;运营中响应气候变化和工程活动的综合影响,年际NDVI呈缓慢上升趋势。② 青藏铁路的工程活动对沿线植被有显著影响。即施工前直接影响区和生态背景区年际NDVI增长率相近;施工中直接影响区年际NDVI增长率低于生态背景区;运营中直接影响区年际NDVI增长率高于生态背景区。③ 研究利用时空不变量,剔除了植被覆盖的空间异质性分量、周期性绿度分量,甄别出了气候变化与工程活动的贡献量。  相似文献   

19.
气候变化是影响草原区植被与环境状况的重要因素。利用呼伦贝尔草原新巴尔虎右旗1958-2016年的气温和降水数据资料,采用线性倾向估计法、累积距平分析法、M-K检验法和Morlet小波分析等方法,从不同时间序列上,对该地区近59年的气候变化趋势、极端气候以及突变现象进行分析。结果表明:年平均气温以0.354℃/10a的速率上升,上升趋势显著;四季平均气温均呈现增温趋势,其中春季增温趋势最大;1985-1986年发生了由低温到高温的突变;研究区年平均气温存在11 a的强显著周期。研究区年降水量整体以8.68 mm/10a的速率呈下降趋势,变化趋势不显著;降水集中在夏季(6-8月),占全年降水量的72.9%,7月降水量最大,有效降水日数最多;1961-1962年和1981-1982年降水发生突变;极端降水指标中日最大降水量、连续5 d最大降水量、强降水量、极强降水量、强降水比率、连续无雨日数、零降水量日数均呈现递减趋势,仅降水强度呈递增趋势,变化趋势均不显著;Morlet小波分析表明研究区年降水量存在52 a的强显著周期。新巴尔虎右旗近59 a气候总体呈现干旱化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号