首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
气候变化对河北省海河流域径流量的影响   总被引:2,自引:0,他引:2  
邵爱军  左丽琼  王丽君 《地理研究》2010,29(8):1502-1509
利用河北省境内海河流域51个气象站、68个水文站1956~2000年近50年的气象、径流量数据,分析了气象要素和径流量的变化规律。河北省境内海河流域多年平均地表径流量为67.0×108m3,从20世纪 50 年代至 90 年代地表径流量呈逐渐减小的趋势,50年代为105.3×108m3,90年代为54.7×108m3。地表径流量随降水量的减少而减小,随气温的升高而下降,用回归方法建立的径流量与气象要素之间的模型为对数模型。根据未来气候变化情景对河北省海河流域径流量的预测:2030年为70.0~76.8×108m3,2050年为69.8~76.9×108m3。  相似文献   

2.
基于GLASS数据估算中国陆表净辐射及其空间分布分析   总被引:1,自引:0,他引:1  
地表辐射收支是能量循环的重要参数,影响着地球水热平衡,是全球气候变化研究的重要方面。多数研究利用MODIS数据估算地表辐射收支,模型输入参数复杂。综合利用GLASS数据、MODIS数据和地面实测数据,采用Bisht等提出的净辐射估算方法,制订一种简单的地表辐射收支估算方案,分别计算2010年1-12月中旬卫星过境时刻中国陆表净辐射的最大值。通过改进的正弦模型将估算结果转换为日最大地表净辐射,并利用地面实测日最大净辐射值对估算结果进行了验证。研究表明:综合利用GLASS数据、MODIS数据和地面实测数据建立的地表辐射收支模型能够很好地模拟中国陆表净辐射的分布,与地面实测日最大净辐射值具有较好的一致性,平均误差为27.21 W?m-2,克服了利用其他遥感数据估算地表辐射收支输入参数复杂,数据量大的缺点,适用于大尺度地表陆表辐射收支研究。  相似文献   

3.
基于Landsat 8与GEOEYE-1遥感数据,使用多尺度遥感方法,以新疆呼图壁县为例,利用SEBS模型计算天山北坡县域蒸散量,服务小流域和县域为管理单元的最严格水资源管理。针对军塘湖河流域耕地、呼图壁河流域耕地和北部荒漠-绿洲过渡带,应用2 m分辨率GEOEYE-1影像计算得NDVI和基于NDVI-TR法模拟的地表温度。将获得的地表温度和NDVI作为SEBS模型的重要参数计算地表蒸散量,采用自制小型蒸渗仪观测数据对估算结果进行评估。结果表明:在使用中分辨率影像Landsat 8估算地表蒸散量过程中加入GEOEYE-1反演的个别参数,大部分估算结果更加接近自制微型蒸渗仪测定值,估算绝对误差最大值出现在裸地,为28.5%,远低于使用Landsat 8影像的54.8%,说明高分影像的参与有助于提高模型估算效率。  相似文献   

4.
城市不同下垫面的能量平衡及温度差异模拟   总被引:2,自引:0,他引:2  
城市能量平衡是研究城市热岛效应的物理基础。利用北京市教学植物园2010年的实测数据,设置不同类型下垫面(植被覆盖类型:林地、草地和不透水层覆盖类型:道路、房屋),利用局地尺度城市气象参数化方案模拟并分析了相同气象条件和净辐射通量输入下,不同类型下垫面的显热、潜热通量及蒸散降温效应的差异。结果显示:(1)不同类型下垫面的各能量支出项有明显差异,植被覆盖区域和不透水层覆盖区域的波文比年均值分别为0.28和4.60,且在植被生长季差异较大;(2)城市扩展过程中道路、房屋替换林地、草地的过程,也是显热增加而潜热减少的过程。植被层向不透水层转换的过程中,显热通量年均增加32.74W/m2,潜热通量减少38.87W/m2,储热通量增加7.95W/m2;(3)理论上,植被蒸散的年降温效应使单位面积植被覆盖区域的气温比不透水层区域可低2.63℃。  相似文献   

5.
地表净辐射是地球表面的短波和长波辐射输入和输出通量辐射平衡的结果,也是地表蒸散与水热平衡研究中非常重要的方面。利用2014年8月下旬的Landsat8遥感影像,采用BISHT等提出的净辐射估算方法,首先通过计算瞬时大气传输率、瞬时短波太阳辐射和下行长波辐射得到了短波辐射与长波辐射的估算值,并进一步通过计算地表反照率等得到了瞬时净辐射和日均净辐射,最后利用地面实测净辐射值对估算结果进行了验证。研究表明:利用分辨率较高的Landsat8数据和部分气象参数能够很好地模拟该地区晴天的瞬时和日间净辐射的分布,并且与地面实测净辐射值具有较好的一致性,平均误差为14.5 W·m-2。研究弥补了利用其他遥感数据估算地表辐射参数复杂、精度偏低的缺陷,可以适用于干旱地区的晴天瞬时和日间净辐射值的估算,并且能够有效的提高估算精度。  相似文献   

6.
从MODFLOW源程序的角度出发,根据地下水模型计算需要的输入输出数据格式和我国GIS类数据以MAPGIS为主的特点,建立了二者之间的集成关系,并将其应用于华北平原地下水资源评价中。根据华北平原特定的水文地质条件,建立了适合本区的三维非稳定流地下水模型,结合2003年12月的实际流场以及随时间变化的动态观测资料对模型的渗透系数、给水度和释水系数等参数进行了校正。同时进行了水均衡分析,结果表明华北平原地下水在2002年1月至2003年12月总补给量为493.74×108m3,总排泄量为565.30×108m3,均衡差为-71.56×108m3,为负均衡。集成了该地下水模型的信息系统,可以通过更新源汇项数据库资料而对地下水资源进行实时评价,为华北平原水资源可持续利用和管理提供依据。  相似文献   

7.
应用遥感方法估算区域蒸散量的制约因子分析   总被引:12,自引:8,他引:12  
遥感方法估算区域蒸散量应用比较广泛的有两种,一种是完全以地表热量平衡方程为基础.用遥感方法估算出净辐射、土壤热流量和显热通量,然后用余项法求出蒸散量;另一种是以Penman—Monteith方程为基础.结合地表热量平衡方程,直接估算出蒸散量。本文根据国内外的研究现状,对应用遥感方法估算区域蒸散量的制约因子进行了深入的分析,这些制约因子包括(1)图像信息源;(2)反照率、比辐射率和表面温度等地表参数的遥感反演精度;(3)空气动力学阻抗和表面阻抗模型;(4)估算结果的验证方法(5)时间尺度的扩展问题。分析结果表明:长期以来由于这些因子中所涉及到的许多关键技术和难点问题都没得到很好的解决,因而极大地制约着应用遥感方法估算区域蒸散量的发展。通过对制约因子的分析.可以有助于高精度遥感蒸散模型的建立。  相似文献   

8.
黄土高原典型流域土地利用变化对蒸散发影响研究   总被引:4,自引:0,他引:4  
选取黄土高原典型流域罗玉沟流域为研究区,以2006年和1986年两个时段的TM影像为原始数据,通过SEBAL模型估算蒸散量,采用地面实测资料对估算结果进行验证,表明SEBAL模型在该流域较为适用.同时,得到该流域蒸散发的空间变化规律,并结合该流域相应时段的土地利用变化进行对比分析.结果表明:(1)遥感反演日蒸散量平均为...  相似文献   

9.
通过引入土壤水分可供率因子修正双层遥感蒸散模型中的植被剩余阻抗,以改进表层土壤含水量较小时的植被显热通量估算,并与美国Walnut Gulch流域两个地表通量站的观测值进行比较。实验结果表明:土壤水分可供率遥感估算值与实测波文比换算值的相关系数R2均大于0.84;引入土壤水分可供率改进后的显热通量估算值与实测值的相关系数R提高了0.34;均方根误差在两个通量站分别减少73.5W/m2和97.2W/m2,相对均方根误差均减小15%以上。结合土壤水分可供率的显热通量估算方法能够有效提高估算精度。  相似文献   

10.
王万同  王卷乐  杜佳 《地理研究》2013,32(5):817-827
MODIS数据时间分辨率较高,在对地能量和水分变化监测应用中具有不可比拟的优势。但其空间分辨率较低,混合象元效应显著,尤其在地表土地利用类型复杂和空间异质性较大时,会带来较大的误差。而ETM+数据具备较高的空间分辨率,但其单一的热红外波段导致反演的地表温度精度不高,且时间分辨率低,因而限制了在地表蒸散监测中的应用。本文探讨了将TM/ETM+与MODIS数据相融合估算区域地表蒸散的一种多尺度遥感方法,利用TM/ETM+计算得到的植被指数,基于空间增强方法将MODIS反演的地表温度尺度提高到30 m,并结合SEBS模型对伊洛河流域的地表蒸散进行了估算。验证与分析的结果表明,估算精度得到提高,研究区当日蒸散量在0~5.32 mm/d之间,空间分布具有明显的地域性差异,区域分布不均衡。  相似文献   

11.
MODIS影像的NDVI和LSWI植被水分含量估算   总被引:6,自引:4,他引:2  
植被含水量估算在作物灌溉和森林火灾预警中具有重要指导意义。采用8天合成MODIS地表反射率数据,针对植被水分含量与陆表水指数,植被覆盖与归一化植被指数的关系及不同植被类型和地表水分含量状况在NDVI-LSWI二维空间中的分布规律,在NDVI-LSWI梯形特征空间中确定最大和最小含水量边界线的基础上采用植被干燥指数直接估算植被水分亏缺程度。该方法不仅简便,而且可以避开植被指数温度梯形图中陆地表面温度和气温差值的测量。  相似文献   

12.
基于MODIS-NDVI、DEM和气象数据,分析柴达木盆地2000—2015年植被覆盖度(FVC)时空变化特征,并与降水、温度、日照时数、相对湿度、蒸散量和海拔进行相关、偏相关或叠加分析,探讨FVC与各环境因子的关系。结果表明:FVC整体自东南向西北内陆呈半环状递减,FVC集中在20%以下,人类活动及径流等打破植被地带性规律;2000—2015年FVC明显改善,广泛分布于盆地中西部地区,2001—2002年年际变化最显著;FVC与降水、相对湿度以正相关为主,与温度关系不显著,与日照时数和蒸散量主要为负相关,降水对FVC贡献最大,温度通过影响蒸散量等间接影响FVC,而土壤蒸发对蒸散量的影响大于植物蒸腾;FVC与等高线空间分布较吻合,FVC在2 800~2 900 m和4 600~4 700 m出现两个峰值,4 700 m以上FVC迅速降低。  相似文献   

13.
We present a simple method to derive spatial precipitation (P) and evapotranspiration (ET) for the typical steppe of the Xilin river catchment at 1 km and 8-day resolution during the main vegetation period (23 April to 28 August) of 2006. The hydrological model BROOK90 was parameterised from eddy covariance measurements. The daily model input data, precipitation, minimum (Tamin) and maximum air temperature (Tamax), were derived by manipulating MODIS leaf area index (LAI) and surface temperature data. P was estimated based on a linear regression of P measured at several sites against the mean gain of the MODIS LAI of surrounding 3 × 3 pixels areas (R2 = 0.76). Tamin and Tamax were derived using a relationship between measured Tamin and Tamax and MODIS surface temperatures (R2 = 0.92 and R2 = 0.88, respectively). The mean precipitation was 145 mm; it varied between 52 mm in the north-western region and 239 mm in the eastern region. In spring, the modelled ET was low (<0.8 mm d−1); evaporation dominated over transpiration and spatial differences were small. At the end of June, the mean ET reached its maximum (2 mm d−1) and spatial differences were pronounced. From July on, transpiration dominated over declining evaporation, and spatial differences decreased in August.  相似文献   

14.
小气候、雪盖及土壤湿度对高山生态系统功能的影响   总被引:1,自引:0,他引:1  
1 Introduction High mountain landscapes above the tree-line are often regarded as close to nature, although human impact has obviously changed the environment, partly exceeding its carrying capac- ity (L?ffler, 2000). Due to their fragility regarding expected environmental changes and an increasing land use pressure in many regions, high mountain landscapes recently became a major focus within the discussion on a sustainable development in a worldwide (Messerli and Ives, 1997), and regional p…  相似文献   

15.
1 Introduction High mountain landscapes above the tree-line are often regarded as close to nature, although human impact has obviously changed the environment, partly exceeding its carrying capac- ity (L?ffler, 2000). Due to their fragility regarding expe…  相似文献   

16.
荒漠下垫面陆面过程和大气边界层相互作用敏感性实验   总被引:7,自引:10,他引:7  
建立了一个研究荒漠下垫面陆面物理过程与大气边界层相互作用的模式. 模拟了荒漠下垫面的土壤环境物理、地面热量通量、蒸发、蒸散及大气边界层结构特征.并对主要的环境物理参数进行了敏感性实验.结果表明,本模式能合理地模拟荒漠下垫面地表热量平衡、土壤体积含水量、地表植被蒸发散阻抗、地表水汽通量日变化和湍流交换系数、湍流动能、位温和比湿廓线等.该模式还可进一步应用于研究区域陆面物理过程与大气边界层相互作用机制,及与中尺度大气模式耦合用于区域环境生态和气候的研究.  相似文献   

17.
增湿调温的气候调节功能是湿地重要的生态功能。位于干旱区的湿地,其增湿调温功能尤为明显。湿地自由水面巨大的水汽蒸发及湿地茂密植被剧烈的水汽蒸腾,是其增湿调温、调节气候的主要物质基础。通过计算艾比湖湿地年水汽蒸发、蒸腾量,得出其每年调节气候的生态服务价值为97788.86×104元,占艾比湖湿地总生态服务价值的31.9%,位居研究区各项生态价值之首。结果表明,增湿调温的气候调节功能是处于极端干旱地理条件下的艾比湖湿地最重要的生态服务功能。  相似文献   

18.
以西北半干旱地区的内蒙古农牧交错地带锡林郭勒盟为研究区,以不同退化程度的草地为研究对象,通过叶面积指数计算各像元的动力传输粗糙度长度,以改进显热通量算法;并结合植被/土壤组分温度分别计算基于亚像元的植被/土壤的显热通量。由敏感性分析和模型验证表明,改进的显热通量算法能够提高区域尺度的能量平衡计算精度。  相似文献   

19.
不同类型生态系统水热碳通量的监测与研究   总被引:5,自引:0,他引:5  
亚太地区环境革新战略项目(APEIS) 在中国5种主要生态系统类型区(草地: 海北、耕地: 禹城、稻田: 桃源、林地: 千烟洲、荒漠: 阜康) 建立了一个以连续观测能量、水分和碳素通量为中心,包括气象、水文、土壤、植被等各项生态要素的监测网络系统,被称之为APEIS-FLUX系统。作者首先对APEIS-FLUX系统的观测数据进行了初步分析,表明该系统稳定可靠,它可以实时地提供高质量、高精度、长期而连续的通量及生态要素的观测数据。对数据的比较清楚地反映出了不同生态系统类型区的水热碳通量的差异性。其次,利用APEIS-FLUX数据对美国航空航天局(NASA) 的MODIS数据产品进行比较验证后发现,除部分产品如地表面温度(MOD11) 等与观测数据较吻合以外,大部分数据产品如土地覆盖(MOD12),叶面积指数(MOD15) 和光合速率与净第一性生产力(MOD17) 等都与观测数据相差深远,有必要对其处理程序和模式进行修正。为此,我们利用APEIS-FLUX的数据作为MOD15和MOD17的生成模型(BIOME-BGC) 的输入数据,并对该模型的有关参数进行了修订。结果表明,该模式在通过修正后,可以很好地模拟植被的生长过程及其相应的水热碳循环过程。  相似文献   

20.
王丽娟  郭铌  沙莎  胡蝶 《中国沙漠》2022,42(6):1-13
利用2009年地面实测资料,分析中国西北地区不同气候区潜热、感热及其与净辐射之比随土壤体积含水量、土壤温度及入射辐射的变化特征,并结合2000—2018年中分辨率成像光谱仪(MODIS)产品讨论特征空间法在中国西北地区的适用性。结果表明:在以玛曲站为代表的高寒湿润区,入射能量始终是潜热的主导因素,用于潜热估算的斜率φ可直接取1.26,潜热估算精度依赖于净辐射的反演结果。在以兰州大学半干旱气候与环境监测站(SACOL,榆中站)和长武站为代表的半干旱、半湿润区,当入射能量充足时,土壤水分成为潜热的主导因子,这时候使用特征空间法估算的斜率φ值与实测值相关性显著,φ的估算精度将直接影响潜热估算结果。所以,特征空间法适用于以水分为潜热主导因子的地区和时段,且要满足植被指数与地表温度呈负相关。另外需要注意的是在选择特征空间法研究区时必须保证植被指数与地表温度的散点呈规则的“三角形”。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号