首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Studying the change in population distribution and density can provide important basis for regional development and planning. The spatial patterns and driving factors of the change in population density in China were not clear yet. Therefore, using the population census data in 2000 and 2010, this study firstly analyzed the change of population density in China and divided the change in all 2353 counties into 4 types, consisting of rapid increase, slow increase, slow decrease and rapid decrease. Subsequently, based on the partial least square(PLS) regression method, we recognized the significant factors(among 11 natural and social-economic factors) impacting population density change for the whole country and counties with different types of population change. The results showed that:(1) compared to the population density in 2000, in 2010, the population density in most of the counties(over 60%) increased by 21 persons per km2 on average, while the population density in other counties decreased by 13 persons per km2. Of all the 2353 counties, 860 and 589 counties respectively showed rapid and slow increase in population density, while 458 and 446 counties showed slow and rapid decrease in population density, respectively.(2) Among the 11 factors, social-economic factors impacted population density change more significantly than natural factors. The higher economic development level, better medical condition and stronger communication capability were the main pull factors of population increase. The dense population density was the main push factor of population decrease. These conclusions clarified the spatial pattern of population change and its influencing factors in China over the past 10 years and could provide helpful reference for the future population planning.  相似文献   

2.
Climate change is a global environmental crisis, but there have been few studies of the effects of climate change on cereal yields on the Tibetan Plateau. We used data from meteorological stations and statistical yearbooks to assess the impacts of climate change on cereal yields in Tibet. Three types of statistical models were selected: fixed-effects model, first-difference models, and linear detrending models. We analyzed the impacts of climate change(including the minimum temperature, precipitation, growing degree days and solar radiation) on cereal yields in Tibet from 1993 to 2017 at the county, prefecture-level city, and autonomous region scales. The results showed that the sensitivity of cereal yields in Tibet to temperature(minimum temperature and growing degree days) was greater than their sensitivity to precipitation and solar radiation. The joint impacts of climate variables were positive, but the sensitivity and significance varied in different regions. The impacts of minimum temperature, precipitation, and solar radiation were positive in all cities, apart from the negative impacts of growing degree days on cereal yields in Lhasa. The impacts of climate trends on cereal yields in Tibet were positive and the results were in the range of 1.5%–4.8%. Among the three types of model, the fixed-effects model was the most robust and the linear detrending model performed better than the first-difference model. The robustness of the first-difference model decreased after adding the interaction terms between different climate variables. Our findings will help in implementing more spatially targeted agricultural adaptations to cope with the impacts of climate change on the agro-ecosystem of the Tibetan Plateau.  相似文献   

3.
阿克苏河流域气候变化对潜在蒸散量影响评价(英文)   总被引:1,自引:1,他引:0  
Evapotranspiration is one of the key components of hydrological processes. Assessing the impact of climate factors on evapotranspiration is helpful in understanding the impact of climate change on hydrological processes. In this paper, based on the daily meteorological data from 1960 to 2007 within and around the Aksu River Basin, reference evapotranspiration (RET) was estimated with the FAO Penman-Monteith method. The temporal and spatial variations of RET were analyzed by using ARCGIS and Mann-Kendall method. Multiple Regression Analysis was employed to attribute the effects of the variations of air temperature, solar radiation, relative humidity, vapour pressure and wind speed on RET. The results showed that average annual RET in the eastern plain area of the Aksu River Basin was about 1100 mm, which was nearly twice as much as that in the western mountainous area. The trend of annual RET had significant spatial variability. Annual RET was reduced significantly in the southeastern oasis area and southwestern plain area and increased slightly in the mountain areas. The amplitude of the change of RET reached the highest in summer, contributing most of the annual change of RET. Except in some high elevation areas where relative humidity predominated the change of the RET, the variations of wind velocity predominated the changes of RET almost throughout the basin. Taking Kuqa and Ulugqat stations as an example, the variations of wind velocity accounted for more than 50% of the changes of RET.  相似文献   

4.
Solar energy is clean and renewable energy that plays an important role in mitigating impacts of environmental problems and climate change.Solar radiation received on the earth's surface determines the efficiency of power generation and the location and layout of photovoltaic arrays.In this paper,the average daily solar radiation of 77 stations in China from 1957 to 2016 was analyzed in terms of spatial and temporal characteristics.The results indicate that Xinjiang,the Qinghai-Tibet Plateau,North,Central and East China show a decreasing trend with an average of 2.54×10?3MJ/(m2?10a),while Northwest and Northeast China are basically stabilized,and Southwest China shows a clear increasing trend with an average increase of 1.79×10?3MJ/(m2?10a).The average daily solar radiation in summer and winter in China from 1957 to 2016 was 18.74 MJ/m2and 9.09 MJ/m2,respectively.Except for spring in Northwest,East and South China,and summer in northeast China,the average daily solar radiation in all other regions show a downward trend.A critical point for the change is 1983 in the average daily solar radiation.Meanwhile,large-scale(25?30 years)oscillation changes are more obvious,while small-scale(5?10 years)changes are stable and have a global scope.The average daily solar radiation shows an increasing-decreasing gradient from west to east,which can be divided into three areas west of 80°E,80°E?100°E and east of 100°E.The average daily solar radiation was 2.07 MJ/m2in the 1980s,and that in 1990s lower than that in the 1960s and the 1970s.The average daily solar radiation has rebounded in the 21st century,but overall it is still lower than the average daily solar radiation from 1957 to 2016(13.87 MJ/m2).  相似文献   

5.
Climate change is an important factor affecting the sustainable development of tourist destinations. Based on the monthly observation data of the main meteorological stations on the ground in Tibet from 1960 to 2015, this paper constructs a tourism climate index model. This index is used to quantitatively evaluate the tourism climate changes in Tibet, and investigate the impact of climate change on tourism. The results show that from 1960 to 2015, the temperature in Tibet increased by 1.35°C, and the tourism climate index changed significantly, especially in the regions of Changtang, Ngari and Kunlun Mountain. The fluctuation of temperature-humidity index, wind-chill index and index of clothing of these areas was larger than that of other regions. The changes of each index in different months are different, where spring observes larger changes while summer observes smaller changes. The tourism climate index in northwestern Tibet has increased, and the climate comfort period is expanding. In southeastern Tibet, the comfort level has declined and the comfort level in the central part has been slowly increasing. The comfort index in the southeastern part of Tibet has gradually declined, and the comfort index in central Tibet has slowly increased. According to the comprehensive assessment method including temperature and humidity index, wind-chill index, index of clothing and altitude adaptability index, the types of tourism climate index in Tibet can be divided into reduced, low-speed growth, medium-speed growth and rapid growth. Different regions should adopt alternative tourism products, strengthen energy conservation and emission reduction technology applications and green infrastructure construction, and appropriately control the scale of tourism activities so as to adapt to and mitigate the impact of climate change on tourist destinations.  相似文献   

6.
基于GIS的中国人口重心的密度分级与曲线特征   总被引:1,自引:1,他引:0  
In this paper, with the spatial analysis functions in ArcGIS and the county-level census data of 2000 in China, the population density map was divided and shown by classes, meanwhile, the map system of population distribution and a curve of population centers were formed; in accordance with the geographical proximity principle, the classes of population densities were reclassified and a population density map was obtained which had the spatial clustering characteristic. The multi-layer superposition based on the population density classification shows that the population densities become denser from the Northwest to the Southeast; the multi-layer clustering phenomenon of the Chinese population distribution is obvious, the populations have a water-based characteristic gathering towards the rivers and coastlines. The curve of population centers shows the population densities transit from the high density region to the low one on the whole, while in low-density areas there are relatively dense areas, and in high-density areas there are relatively sparse areas. The reclassification research on the population density map based on the curve of population centers shows that the Chinese population densities can be divided into 9 classes, hereby, the geographical distribution of Chinese population can be divided into 9 type regions: the concentration core zone, high concentration zone, moderate concentration zone, low concentration zone, general transitional zone, relatively sparse area, absolute sparse area, extreme sparse area, and basic no-man's land. More than 3/4 of the population of China is concentrated in less than 1/5 of the land area, and more than half of the land area is inhabited by less than 2% of the population, the result reveals a better space law of China’s population distribution.  相似文献   

7.
长江上游社会经济因子对侵蚀产沙的影响   总被引:1,自引:0,他引:1  
In recent years,the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projec-tions in the Upper Yangtze River,but it has not been evaluated at the macro scale.Taking Sichuan Province and Chongqing City as an example,this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007.The results show that sediment yield is significantly correlated with population density and cultivated area,in which the former appears to be more closely related to sediment yield.Moreover,in the relation of sediment yield vs.population density,a critical value of population density exists,below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density.The phenomenon essentially reflects the influence of natural factors,such as topography,precipitation and soil property,and some human activities on sediment yield.The region with a higher population density than critical value is located in the east of the study area and is characterized by plains,hills and low mountains,whereas the opposite is located in the west and characterized by middle and high mountains.In the eastern region,more people live on the lands with a low slope where regional soil erosion is slight;therefore,sediment yield is negatively related with population density.In contrast,in the western region,the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion,and in turn,high-intensity agricultural practices in these areas may further strengthen local soil erosion.It is also found that popu-lation tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield.The natural factors have greater influence on sediment yield of western region than that of eastern region.Generally,the natural factors play a dominant role on sediment yield in the Upper Yangtze River.  相似文献   

8.
Trends of annual and monthly temperature, precipitation, potential evapotranspi- ration and aridity index were analyzed to understand climate change during the period 1971–2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56–Penmen–Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and mini- mum temperatures, solar radiation, relative humidity and wind speed. Results indicate gen- erally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly poten- tial evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simulta- neous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.  相似文献   

9.
In mountainous area, spatial interpolation is the traditional method to calculate air temperature by use of observed temperature data. Due to lack of sufficient observation data in mountainous areas many precise interpolation methods could give only coarse result which could not meet the demand of precision agriculture and local climate exploration. Based on DEMs of 25 m resolution, a reversed model is constructed, with which temperature is simulated to the corresponding slope unit from the solar radiation. Taking Yaoxian county as a test area, and mean monthly temperature data as basic information sources, which are collected from 15 weather stations around Yaoxian county in Shaanxi province from the year of 1970 to 2000, a simulation for the solar radiation cell by cell is completed. By simulating solar radiation at each slope and flat cell unit, the terrain revised temperature model could be realized. A comparison between the simulated temperature and the radiation temperature from TM6 thermal infrared image shows that the terrain improved model gets a finer temperature distribution at local level. The accuracy of simulated temperature in mountainous area is higher than it is in flat area.  相似文献   

10.
Despite the observed increase in global temperature, observed pan evaporation in many regions has been decreasing over the past 50 years, which is known as the "pan evaporation paradox". The "pan evaporation paradox" also exists in the Tibetan Plateau, where pan evaporation has decreased by 3.06 mm a-2 (millimeter per annum). It is necessary to explain the mechanisms behind the observed decline in pan evaporation because the Tibetan Plateau strongly influences climatic and environmental changes in China, Asia and even in the Northern Hemisphere. In this paper, a derivation based approach has been used to quantitatively assess the contribution rate of climate factors to the observed pan evaporation trend across the Tibetan Plateau. The results showed that, provided the other factors remain constant, the increasing temperature should have led to a 2.73 mm a-2 increase in pan evaporation annually, while change in wind speed, vapor pressure and solar radiation should have led to a decrease in pan evaporation by 2.81 mm a-2, 1.96 mm a-2 and 1.11 mm a-2 respectively from 1970 to 2005. The combined effects of the four climate variables have resulted in a 3.15 mm a-2 decrease in pan evaporation, which is close to the observed pan evaporation trend with a relative error of 2.94%. A decrease in wind speed was the dominant factor for the decreasing pan evaporation, followed by an increasing vapor pressure and decreasing solar radiation, all of which offset the effect of increasing temperature across the Tibetan Plateau.  相似文献   

11.
Solar radiation is an important driving force for the formation and evolution of climate system. Analysis of change in solar radiation is helpful in understanding mechanism of climate change. In this study, the temporal and spatial variations of solar radiation and the cause of the change in solar radiation have been analyzed based on meteorological data from 46 national meteorological stations and aerosol index data from TOMS over the Haihe River Basin and surrounding areas. The results have shown that solar radiation and direct radiation significantly decreased, while scattered radiation increased during the period 1957–2008. Spatially, the decreasing trend of solar radiation was more and more significant from low population density areas to high population density areas. The spatial distribution of increase in aerosol index is consistent with that of decrease in solar radiation. The increase in aerosols resulting from human activities was an important reason for the decrease in solar radiation.  相似文献   

12.
海河流域太阳辐射变化及其原因分析   总被引:9,自引:0,他引:9  
太阳辐射是控制气候形成的基本能量,分析太阳辐射的变化有助于深入理解气候变化的原因.本文利用海河流域及其周边46个气象站气象资料以及TOMS(the Total Ozone Mapping Spectrometer)卫星反演逐日气溶胶指数资料,分析了海河流域太阳辐射的时空变化规律,并对太阳辐射变化的原因进行了初步分析.研究结果表明,1957-2008年海河流域太阳总辐射呈明显下降趋势,其中太阳直接辐射下降趋势明显,散射辐射呈增加趋势;从空间分布上看,流域南部和冀东沿海的人口高密度区相比流域北部的燕山和太行山人口低密度区太阳总辐射减小趋势更为明显.对太阳辐射下降原因的研究表明,人类活动造成气溶胶的显著增加可能是引起太阳辐射下降的重要原因.  相似文献   

13.
彭艳  王钊  李星敏  堇妍 《干旱区地理》2012,35(5):738-745
 根据常规气象观测资料以及MODIS卫星气溶胶产品,分析了西安近50 a总辐射变化特征及其相关影响因子。结果表明:西安地区1961-2005年总辐射变化经历了“持续”、“变暗”、“变亮”、“再变暗”4个阶段,西安总辐射的变化幅度较全国平均变化幅度大,其“变亮”过程开始于1985年,较全国平均时间略早;西安4个季节总辐射总体均呈现出下降趋势,其变化幅度存在一定差异。通过对云量、气溶胶、水汽压、相对湿度等影响因子的分析,水汽压和相对湿度对总辐射变化影响不明显,总云量和气溶胶的变化对西安总辐射的变化存在较显著的影响,春、夏季总辐射的变化主要受云量和气溶胶直接辐射强迫的共同影响,其中总云量的变化在一定程度上决定了总辐射变化的振幅,城市发展所导致的气溶胶增加所产生的直接辐射强迫作用可能决定了总辐射的总体下降趋势;秋、冬季节的总辐射下降趋势主要与气溶胶的直接辐射强迫有关。  相似文献   

14.
青藏高原近30年气候变化趋势   总被引:209,自引:17,他引:192  
以1971~2000年青藏高原77个气象台站的观测数据 (最低、最高气温,日照时数,相对湿度,风速和降水量) 为基础,应用1998年FAO推荐的Penman-Monteith模型,并根据我国实际状况对其辐射项进行修正,模拟了青藏高原1971~2000年的最大可能蒸散,并由Vyshotskii模型转换为干燥度,力求说明近30年青藏高原的气候变化趋势,以及干湿状况的空间分布。应用线性回归法计算变化趋势,并用Mann-Kendall方法进行趋势检验。结果表明:青藏高原近30年气候变化的总体特征是气温呈上升趋势,降水呈增加趋势,最大可能蒸散呈降低趋势,大多数地区的干湿状况有由干向湿发展的趋势。气候因子与地表干湿状况间并不是线性关系,存在很大的不确定性。  相似文献   

15.
李净  王丹  冯姣姣 《地理科学》2017,37(6):912-919
现有的神经网络模拟太阳辐射的模型很少考虑云、气溶胶、水汽对太阳辐射的影响,采用MODIS提供的气溶胶、云、水汽高空大气遥感产品和常规气象数据,输入LM(Levenberg-Marquardt)算法优化后的BP(Back-Propagation)神经网络模型(简称LM-BP)模拟了和田、西宁、固原、延安4个辐射站点的太阳辐射月均值。验证结果表明:神经网络模型中加入气溶胶、云、水汽之后,4个辐射站点的R2均大于0.90,且各项误差指标均小于仅用常规气象站点数据模拟的太阳辐射结果。  相似文献   

16.
基于LM-BP神经网络的西北地区太阳辐射时空变化研究   总被引:2,自引:1,他引:1  
定量模拟太阳辐射对认识西北地区气候变化至关重要,但西北地区辐射站点稀少,而气象站点较多,利用众多的气象站点观测值模拟太阳辐射是获得太阳辐射数据很好的方法之一。利用LM (Levenberg-Marquardt) 算法对普通的BP神经网络进行优化(优化后的BP神经网络简称LM-BP神经网络)模拟太阳辐射,通过与传统气候模型模拟的太阳辐射结果对比发现,LM-BP神经网络模型的模拟精度最高,模拟值与实测值的拟合程度明显优于H-S模型和A-P模型。由此利用西北地区159个气象站点的气象数据和LM-BP神经网络模型模拟了1990~2012年这些气象站点的太阳总辐射月总量,将LM-BP神经网络模拟的气象站点的太阳辐射和25个辐射观测站的实测太阳辐射数据相结合,通过空间插值得到了西北地区太阳总辐射的空间分布,并分析了其时空分布及变化特征。研究结果发现西北地区1990~2012年的年均总辐射月总量变化为262~643 βMJ/m2,呈现“中间高,两端低”的空间分布特征。LM-BP神经网络模型的模拟精度高,是一种很有发展前景的辐射模拟方法,可将其应用在无辐射观测地区的太阳辐射模拟中。  相似文献   

17.
阿多  熊凯  赵文吉  宫兆宁  井然  张磊 《地理科学》2016,36(10):1555-1564
根据华北平原67个气象站点和14个辅助气象站点1960~2013年的日均温和日降水量数据,采用气候倾向率法、Mann-Kendall突变检测法和累积距平法等,对华北地区近54 a不同研究尺度下的气候变化趋势、突变情况以及其与太阳活动和大气环境变化的关系进行研究。结果表明:1960~2013年,华北平原年均温在11.86~14.33℃之间波动,整体呈现显著上升趋势,气候倾向率为0.23℃/10a。其中大气环境中浑浊度的升高,春季气温的抬升、是区域平均气温升高的诱因。气温的升高推动了>15℃等温线控制范围的扩张和年均温0℃等值线在华北平原的消失。华北平原年降水在617.96~1 060.30 mm之间波动,整体呈现显著减少趋势,气候倾向率为-1.75 mm/10,其中秋季降水量减少过快,400~600 mm降水等值线控制范围的扩大、600~800 mm和800~1 000 mm降水等值线的范围的缩小,共同造成区域降水量的减少。四季气候倾向率的特征变化敏感区域主要位于北纬35°~39°之间。1991~1994年为华北平原气候的突变时期,且这一突变受太阳活动的影响更多。太阳活动对最高气温的影响较大,浑浊度对最低气温的影响较大。大气环境因子中的日照百分比率、相对湿度、风速和浑浊度与气温整体变化平均相关系数为0.74。气候条件越好,气溶胶含量越低,太阳辐射与年均温的相关系数越高。气溶胶含量越高,浑浊度因子与年均温的相关系数也越高。人类活动导致的气溶胶含量的增加,是该区域气温升高的主要外因。  相似文献   

18.
青藏高原地表土壤水变化、影响因子及未来预估   总被引:2,自引:0,他引:2  
土壤水分是地表和大气连接的纽带,在水文循环中扮演着重要角色。青藏高原作为“第三极”和“亚洲水塔”,其土壤水分对周边地区的气候如亚洲季风的形成和维持产生重要影响,也深刻影响着亚洲水资源的可利用量。基于分布在青藏高原3个气候区的100个站点的实测土壤水数据,对ECV、ERA、MERRA、Noah数据集进行评价,选择对土壤水分评估效果最好的数据集,分析各种气象要素对土壤水分时空格局的影响,并预估未来100年内青藏高原土壤水变化,探讨可能气候成因。结果表明:① Noah数据集对青藏高原历史时期土壤水分评估效果最好,相对其他地区,各数据集对那曲地区土壤水分评估效果最优;② 在各种气象因子中,降水是影响大部分地区土壤水分时空变化的最主要因子,但在喜马拉雅山脉地带,尤其山脉北坡,温度和太阳辐射有较高的影响;③ 1948-1970年土壤水分有明显的下降趋势,1970-1990年土壤水分呈波动变化,无明显趋势,1990-2005年土壤水分有一定的上升趋势,2005年后至今土壤水分有明显快速下降趋势:④ 不同未来情景,土壤水分有下降趋势,其中在CRP 8.5情景下,土壤水分下降最为明显,在2080年之后有更加显著的下降趋势;⑤ 未来降水和温度均呈上升趋势,其中干旱指数变化在RCP 8.5情景下呈下降趋势,在RCP 2.6和RCP 4.5情景下无明显变化,干旱指数在一定程度上能解释未来土壤水分的变化格局。  相似文献   

19.
辽宁省潜在蒸散发量及其敏感性规律分析   总被引:2,自引:0,他引:2  
曹永强  高璐  袁立婷  李维佳 《地理科学》2017,37(9):1422-1429
采用Penman-Monteith法和敏感系数法对辽宁省1965~2014年潜在蒸散发量及影响潜在蒸散发的气象因子敏感性进行分析,探讨气候变化下影响辽宁省潜在蒸散发量变化的主导因子及潜在蒸散发对气候变化的定量响应。结果表明:近50 a辽宁省潜在蒸散发呈现显著减少趋势,在空间上由西向东递减; 潜在蒸散发对气象因子的敏感性在年尺度上表现为,水汽压最为敏感,其次为太阳辐射、风速、平均气温;在季节尺度上,春季和秋季对平均气温最不敏感,夏季对风速最不敏感,冬季对太阳辐射最不敏感; 空间分布上,气象因素的敏感系数与气象因子空间变化规律相吻合,潜在蒸散发对气温的敏感性由北部向南部递增,对水汽压、太阳辐射的敏感性由东部向西部递减,而风速与之变化趋势相反。 风速的显著降低是辽宁省潜在蒸散发量下降的主要原因,太阳辐射的下降及水汽压的升高也促使了潜在蒸散发量的下降。  相似文献   

20.
地面温度日较差(DTR)作为重要天气和气候指标,反映昼夜温差极值,比平均气温对地表辐射收支的变化更敏感,对环境变化和气候异常具有重要参考价值。沙尘气溶胶的气候效应是影响岩石圈-大气-海洋系统的重要因子,但目前的研究较少涉及沙尘气溶胶对DTR的影响机制。基于WRF-Chem模式(Weather Research and Forecasting coupled with Chemistry)揭示2002—2005年沙尘气溶胶气候效应对东亚地面温度日较差的影响。结果表明:WRF-Chem模式可以很好体现东亚气象场和沙尘气溶胶的时空分布特征。沙尘气候效应导致东亚大陆大部分地区DTR减小,沙尘直接辐射效应在其中起决定性作用。在白天,沙尘直接辐射强迫加热大气、冷却地表,减小地面总净辐射而降低日最高温度,导致DTR减小。在中国青藏高原和东北部地区,沙尘气溶胶间接效应占主导地位,导致青藏高原地区积雪覆盖减少,东北地区云水含量减小,间接导致DTR增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号