首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
This study firstly analyzed the shrinkage of winter wheat and the changes of cropping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calculated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×104ha. The shrinkage was most serious in the Beijing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%–30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 mm. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×108m3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

2.
The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of crop water consumption and net irrigation water consumption is crucial to guarantee the management of agricultural water resources. An actual crop evapotranspiration(ET) estimation model was proposed, by combining FAO Penman-Monteith method with remote sensing data. The planting area of winter wheat has a significant impact on water consumption; therefore, the planting area was also retrieved. The estimated ET showed good agreement with field-observed ET at four stations. The average relative bias and root mean square error(RMSE) for ET estimation were –2.2% and 25.5 mm, respectively. The results showed the planting area and water consumption of winter wheat had a decreasing trend in the Northern Hebei Plain(N-HBP) and Southern Hebei Plain(S-HBP). Moreover, in these two regions, there was a significant negative correlation between accumulated net irrigation water consumption and groundwater table. The total net irrigation water consumption in the N-HBP and S-HBP accounted for 12.9×10~9 m~3 and 31.9×10~9 m~3 during 2001–2016, respectively. Before and after 2001, the decline rate of groundwater table had a decreasing trend, as did the planting area of winter wheat in the N-HBP and S-HBP. The decrease of winter wheat planting area alleviated the decline of groundwater table in these two regions while the total net irrigation water consumption was both up to 28.5×10~9 m~3 during 2001–2016 in the Northwestern Shandong Plain(NW-SDP) and Northern Henan Plain(N-HNP). In these two regions, there was no significant correlation between accumulated net irrigation water consumption and groundwater table. The Yellow River was able to supply irrigation and the groundwater table had no significant declining trend.  相似文献   

3.
The land fallow policy was adopted by central and local governments to encourage the abandonment of water-intensive crops, such as winter wheat, in groundwater over-exploited areas. At the same time, since the 1990 s, many households in the North China Plain(NCP) have chosen to replace the winter wheat and summer maize double-cropping system with the spring maize single-cropping system. Therefore, it is crucial to identify target land parcels for winter wheat abandonment and to design reasonable and proper standards for ecological compensation prior to the implementation of the land fallow policy in the NCP. In this study, multi-level logit models were used with household survey data in order to detect determinants across land parcel, household and village levels on household cropping system decisions; the opportunity costs for winter wheat abandonment were also calculated using cost–benefit analysis. The results show that:(1) land quality and irrigation condition at parcel level are two essential elements influencing household cropping system decisions. Nearly 70% of the total area of poor land and more than 90% of the total area of unirrigated land has suffered winter wheat abandonment. Target land parcels for the land fallow policy should be those that are irrigated and of high quality.(2) There were no significant differences between net profits from spring maize and summer maize under similar farming conditions, and the opportunity cost for winter wheat abandonment should be equal to the net profit of winter wheat.(3) The primary purpose of the land fallow policy is to induce groundwater recovery and restoration as a preliminary stage. A higher level of 350 yuan/mu is recommended as subsidy for ecological compensation at this stage. Later, the primary purpose of the policy should be a transition to a balance between exploitation and supplementation of water resources, and a lower level of 280 yuan/mu is recommended as a subsidy at this stage.  相似文献   

4.
Crop water productivity (CWP) agricultural development in water scarcity is one of the important indicators for sustainable area. There is serious conflict between water sup- ply and requirement in the Haihe River Basin. CWP of winter wheat and summer maize from 2003 to 2007 in the Haihe River Basin is estimated based on large-scale evapotranspiration (ET) and crop yield obtained by remote sensing technology. Spatial and temporal distribution of CWP of winter wheat and summer maize is investigated in this study. Results show that CWP of winter wheat in most parts of the study area varies from 1.02 kg/m3 to 1.53 kg/m3, and CWP of summer maize varies from 1.31 kg/m3 to 2.03 kg/m3. Multi-year averaged CWP of winter wheat and summer maize in the study area is about 1.19 kg/m3 and 1.59 kg/m3. CWP results show certain promotion potential to alleviate the water shortage in the Haihe River Basin. Correlation analysis of CWP, crop yield and ET shows that there is great potential for crop yield promotion without the growth in irrigation water. Large-scale CWP estimated by remote sensing technology in this study shows spatial distribution features, which could be used to real-time agricultural water resource management combined with crop yield and ET.  相似文献   

5.
The Israeli Desert constitutes 60% of the country's total area. Regional annual precipitation is 100–200 mm and evaporation reaches 2,500 mm. Traditional desert agriculture of rain fed wheat and sheep, goat and camels grazing is common. Despite the harsh climate conditions, advance agriculture is concentrated in foci where water resources exist. Desert agriculture takes advantage of the winter(October–April) due to a mild climate season for growing vegetables, flowers, herbs and fruit which are mostly exported to European countries. The key factor is the sustainable management of the local natural resources. The regional research and development(RD) system is generating adequate local knowledge and technologies. The most important key factor is developing water resources, and using irrigation saving water systems such as drip irrigation. Technologies of protected agriculture such as greenhouses and plastic tunnels are used. The unfit desert soil is substitute by sand and artificial growing media. For gaining market purposes, introduction of botanical species was implemented for various flowers and vegetable varieties, avocado, pitaya, and jojoba. Controlled drip irrigation and drainage helps to solve salinity problems. Integrated Pest Management(IPM) is used to overcome plant protection issues. Advance raising of milking cows was developed by using reduction heat stress methods. Tilapia are raised in open ponds and greenhouse ponds, and ostriches adapted to desert conditions were introduced. On the southern Judean hills where precipitation is 250 mm, through soil conservation and rain harvesting, significant afforestation is changing the desert scenery. The human factor on this process such as farmers, agricultural extension agents and research scientists is the leading factor.  相似文献   

6.
Based on the MODIS NDVI data and Landsat TM/ETM data of 2002 and 2012, this paper extracts the planting area of winter wheat–summer maize, single spring maize, cotton and forest/fruit trees, vegetable and paddy, and made the agricultural land use map of the North China Plain(NCP). Agricultural land use area accounted for 63.32% compared to the total area of the NCP in 2002. And it increased to 65.66% in 2012, which mainly caused by the vegetables and forest/fruit trees increasing. Planting areas of winter wheat–summer maize, cotton, single spring maize, forest/fruit trees, vegetables and paddy were 5031.21×10~3, 865.90×10~3, 1226.10×10~3, 1271.17×10~3, 648.02×10~3, 216.51×10~3 ha in 2012. Rank of changes was: vegetables(+45%) forest/fruit trees(+27.4%) paddy(–23.7%) cotton(–20.4%) single spring maize(+17.3%) winter wheat–summer maize(–0.6%). In developed region like Beijing and Tianjin, planting area of crops with high economic benefit(such as fruit trees and vegetables) increased significantly. Government policies for groundwater protection caused obvious decline of winter wheat cultivation in Hebei Province. Cotton planting in Shandong Province decreased more than 200,000 ha during 2002–2012. The data products will be published in the website: http://hydro.sjziam.ac.cn/Default.aspx. To clarify the agricultural land use in the NCP will be very helpful for the regional agricultural water consumption research, which is the serious problem in the NCP.  相似文献   

7.
Understanding the spatial and temporal variations of cropping systems is very important for agricultural policymaking and food security assessment,and can provide a basis for national policies regarding cropping systems adjustment and agricultural adaptation to climate change.With rapid development of society and the economy,China's cropping structure has profoundly changed since the reform and opening up in 1978,but there has been no systematic investigation of the pattern,process and characteristics of these changes.In view of this,a crop area database for China was acquired and compiled at the county level for the period 1980–2011,and linear regression and spatial analysis were employed to investigate the cropping structure type and cropping proportion changes at the national level.This research had three main findings:(1) China's cropping structure has undergone significant changes since 2002;the richness of cropping structure types has increased significantly and a diversified-type structure has gradually replaced the single types.The single-crop types—dominated by rice,wheat or maize—declined,affected by the combination of these three major food crops in mixed plantings and conversion of some of their planting area to other crops.(2) In the top 10 types,82.7% of the county-level cropping structure was rice,wheat,maize and their combinations in 1980;however,this proportion decreased to 50.7% in 2011,indicating an adjustment period of China's cropping structure.Spatial analysis showed that 63.8% of China's counties adjusted their cropping structure,with the general change toward reducing the main food types and increasing fruits and vegetables during 1980–2011.(3) At the national level,the grain-planting pattern dominated by rice shifted to coexistence of rice,wheat and maize during this period.There were significant decreasing trends for 47% of rice,61% of wheat and 29.6% of maize cropping counties.The pattern of maize cropping had the most significant change,with the maize proportion decreasing in the zone from northeastern to southwestern China during this period.Cities and their surroundings were hotspots for cropping structural adjustment.Urbanization has significantly changed cropping structure,with most of these regions showing rapid increases in the proportion of fruit and vegetables.Our research suggests that the policy of cropping structural adjustment needs to consider geographical characteristics and spatial planning of cropping systems.In this way,the future direction of cropping structural adjustment will be appropriate and scientifically based,such as where there is a need to maintain or increase rice and wheat cropping,increase soybean and decrease maize,and increase the supply of fruit and vegetables.  相似文献   

8.
Spatial distribution changes in major crops can reveal important information about cropping systems.Here,a new centroid method that applies physics and mathematics to spatial pattern analysis in agriculture is proposed to quantitatively describe the historical centroids of rice,maize and wheat in China from 1949 to 2014.The geographical centroids of the rice area moved 413.39 km in a 34.32° northeasterly(latitude 3.08°N,longitude 2.10°E) direction at a speed of 6.36 km/year from central Hunan province to Hubei province,while the geographical centroids of rice production moved 509.26 km in the direction of 45.44° northeasterly(latitude 3.22°N,longitude 3.27°E) at a speed of 7.83 km/year from central Hunan province to Henan province.The geographical centroids of the maize area and production moved 307.15 km in the direction of 34.33° northeasterly(latitude 2.29°N,longitude 1.56°E) and 308.16 km in the direction of 30.79° northeasterly(latitude 2.39°N,longitude 1.42°E),respectively.However,the geographical centroids of the wheat area and production were randomly distributed along the border of Shanxi and Henan provinces.We divided the wheat into spring wheat and winter wheat and found that the geographical centroids of the spring wheat area and production were distributed within Inner Mongolia,while the geographical centroids of winter wheat were distributed in Shanxi and Henan provinces.We found that the hotspots of crop cultivation area and production do not always change concordantly at a larger,regional scale,suggesting that the changing amplitude and rate of each crops' yield differ between different regions in China.Thus,relevant adaptation measures should be taken at a regional level to prevent production damage in those with increasing area but decreasing production.  相似文献   

9.
This study aimed at investigating the photosynthetic pigment accumulation and some growth indices of cowpea, maize and tomato in response to interspecific and intraspecific competition stress. The study was carried out under a screen-house to minimize extraneous factors such as pests and rodents using a randomized complete block design(RCBD). Seeds of cowpea, maize and tomato were collected from the Department of Crop Production and Protection, Faculty of Agriculture,Obafemi Awolowo University, Ile Ife, Osun state, Nigeria. These seeds were planted at a depth of about 3 mm below the soil. The seeds were sown at the rate of six seeds per pot in the monoculture, while in the pots designed for the mixed culture of maize and cowpea, maize and tomato, cowpea and tomato, three seeds of each plant were sown. Two seeds of each plant were sown in the pots with the three crops. The treatments were then supplied with 500 m L of tap water in the morning and in the evening respectively until the seedlings become fully established. The photosynthetic pigments were determined spectrophotometrically with three replicates. Plant growth indices were determined according to Hunts(1978) using leaf area and dry matter data collected at four and six weeks after planting. Statistical analysis was performed using statistical analytical software SAS version 9.2. The results indicated that photosynthetic pigments accumulation(Chlorophyll a, b and carotenoid) in maize(15.98, 23.92 and 44.72 μM), Chlorophyll b and carotenoid in tomato plants(12.48 and 1,178.7μM) in the sole stands were more than the mixed culture of maize with cowpea and tomato(7.195, 14.74 and 0.00 μM).Also, total Chlorophyll in maize(1,127.8 μM), Chlorophyll a and total Chlorophyll in tomato(3.95 and 1,317.5 μM) in the mixed culture were more than in the sole culture of maize(1,030.9 μM) and tomato plants(-9.40 and 546.3 μM). The different photosynthetic pigments accumulated in cowpea were greatly enhanced in the mixed culture than in the sole culture.All the photosynthetic pigments of maize, cowpea and tomato in all the treatments analysed in this study were significantly different at P0.05. Plant growth indices such as net assimilation rate, relative growth rate, crop growth rate and tissue water contents of these plants had higher value in the intercropped than the check crop(sole). These plant growth indices were significantly different to one another at P0.05. This study concluded that competition for shared resources in the mixed culture of tomato, maize and cowpea enhanced growth and accumulation of photosynthetic pigments.  相似文献   

10.
Groundwater resource is vital to the sustainable development of socio-economics in arid and semi-arid regions of Northwest China. An estimation of the groundwater resources variation in Zhangye Basin was made during 1985–2013 based on long-term groundwater observation data and geostatistical method. The results show that from 1985 to 2013, groundwater storage exhibited tremendous dissimilarity on temporal and spatial scale for the whole Zhangye Basin, especially before and after implementation of the water diversion policy. Trend of groundwater storage varied from quick to slow decline or increase. The accumulative groundwater storage decreased nearly 47.52×10~8 m~3, and annual average depletion rate reached 1.64×10~8 m~3/a. Among which, the accumulative groundwater storage of the river and well water mixed irrigation district decreased by 37.48×10~8 m~3, accounting for about 78.87% of the total groundwater depletion of the Zhangye Basin. Accumulative depletion of groundwater storage varied in respective irrigation districts. Though groundwater resources depletion rate slowed down from 2005, the overall storage in the whole basin and respective districts during 1985–2013 was still in a severe deficit such that, the groundwater resource was in a rather negative balance, which could threaten the local aquifer. This is the joint effect of climate change and human activities, however human activities, such as water diversion policy and groundwater exploitation, became increasingly intense. Our research results could provide a reasonable estimation for the groundwater balance in Zhangye Basin, providing a scientific basis for water resources unified planning and, this method can provide a relatively reliable way of estimation for large scale groundwater resources.  相似文献   

11.
河北平原冬小麦播种面积收缩及由此节省的水资源量估算   总被引:6,自引:1,他引:5  
王学  李秀彬  辛良杰 《地理学报》2013,68(5):694-707
以河北平原1998-2010 年11 地市的农业统计数据和22 个气象站点的逐日气温、降水量、水汽压、风速、日照时数和相对湿度等资料为基础,对该地区冬小麦播种面积的收缩情况及由此引发的耕作制度变化进行了分析;同时,结合作物系数法和逐旬有效降水量法,计算了不同耕作制度下的水分亏缺量,进而估算了该地区因耕作制度变化节省的水资源量。结果表明:① 该时段河北平原11 地市冬小麦的播种面积均呈收缩趋势,总面积下降了16.07%,约49.62×104 hm2。京津唐城市群表现最为明显,下降了47.23%;② 冬小麦的降水满足率仅为20%~30%,而春玉米和夏玉米均为50%以上;冬小麦-夏玉米一年两熟制所需的灌溉水资源量为400~530 mm,而春玉米一年一熟制仅为160~210 mm;③ 该时段河北平原因冬小麦播种面积收缩而节省的灌溉水资源量约为15.96×108 m3/a,相当于南水北调中线一期工程为京津冀三省市供水量的27.85%。  相似文献   

12.
华北地下水超采区冬小麦退耕的生态补偿问题探讨   总被引:10,自引:0,他引:10  
压减冬小麦种植面积是有效减少华北平原地下水用量最为有效的方法。近期,国家和地方政府均出台了土地休耕政策,拟在华北地下水超采区退耕冬小麦,实现“一季休耕、一季雨养”。然而,华北平原已经出现农户主动退耕冬小麦的现象。在此背景下,明确冬小麦退耕的瞄准目标、制订合理适度的补偿标准是土地休耕政策有效实施所面对的核心问题。本文利用农户问卷数据,构建多层次logit模型分析农户种植制度决策的影响因素,并计算冬小麦退耕的机会成本,旨在确定华北平原地下水超采区土地休耕政策的瞄准目标,并为农户补偿标准的制订提供建议。结果表明:① 地块层次的土地质量和灌溉条件是解释农户种植制度差异的关键因素,近70%的四等耕地和90%以上的旱地已退出冬小麦耕作,土地休耕政策应瞄准一、二、三等土地质量的水浇地;② 相似耕作条件的地块种植春、夏玉米的净收益大致相同,土地休耕的机会成本等于种植冬小麦的净收益;③ 仅考虑冬小麦对地下水资源的影响,土地休耕政策初期以地下水回升和地下水环境恢复为主要目标时,建议以350元/亩作为补偿标准参考值,后期目标转为维持地下水资源采补平衡时,可调整至280元/亩左右。  相似文献   

13.
全生育期内作物需水量的研究是农业水资源有效利用和进行合理灌溉的重要依据。基于三江平原22个气象站点2000—2015年逐日气象观测资料及中国区域地面气象要素数据集,利用国际粮农组织 (FAO)Penman-Monteith模型和分段单值平均作物系数法,分别对三江平原水稻、玉米和大豆的作物需水量进行计算,分析作物需水量年际变化特征,采用通径分析法研究作物需水量的变化成因。结果表明:(1)三江平原16 a来年均参考作物蒸散量为537.4 mm,日均为 3.5 mm,呈波动减少趋势。(2)生长季内,水稻在分蘖期需水量最大,为177.1 mm,玉米在七叶期需水量最大,为99.7 mm,大豆在结荚期需水量最大,为96.1 mm;水稻、玉米和大豆的净灌溉需水量分别为195.4 mm、130.8 mm和72.2 mm,对灌溉的依赖程度水稻>玉米>大豆。(3)由通径分析结果可知,三江平原作物需水量的主要影响因素为净辐射、气温和日照时数。  相似文献   

14.
The land fallow policy was adopted by central and local governments to encourage the abandonment of water-intensive crops, such as winter wheat, in groundwater over-exploited areas. At the same time, since the 1990s, many households in the North China Plain (NCP) have chosen to replace the winter wheat and summer maize double-cropping system with the spring maize single-cropping system. Therefore, it is crucial to identify target land parcels for winter wheat abandonment and to design reasonable and proper standards for ecological compensation prior to the implementation of the land fallow policy in the NCP. In this study, multi-level logit models were used with household survey data in order to detect determinants across land parcel, household and village levels on household cropping system decisions; the opportunity costs for winter wheat abandonment were also calculated using cost–benefit analysis. The results show that: (1) land quality and irrigation condition at parcel level are two essential elements influencing household cropping system decisions. Nearly 70% of the total area of poor land and more than 90% of the total area of unirrigated land has suffered winter wheat abandonment. Target land parcels for the land fallow policy should be those that are irrigated and of high quality. (2) There were no significant differences between net profits from spring maize and summer maize under similar farming conditions, and the opportunity cost for winter wheat abandonment should be equal to the net profit of winter wheat. (3) The primary purpose of the land fallow policy is to induce groundwater recovery and restoration as a preliminary stage. A higher level of 350 yuan/mu is recommended as subsidy for ecological compensation at this stage. Later, the primary purpose of the policy should be a transition to a balance between exploitation and supplementation of water resources, and a lower level of 280 yuan/mu is recommended as a subsidy at this stage.  相似文献   

15.
冬小麦水分耗散特性与农业节水   总被引:6,自引:0,他引:6  
吴凯  陈建耀 《地理学报》1997,52(5):455-460
本文根据中国科学院禹城综合试验站1986年-1996年蒸渗仪农田水分模拟试验资料统计;冬小麦全生育期耗水量可达482.5mm,缺水率可达69.3%;冬小麦全生育不分耗散过程有两个明显的需水峰区和3个关键需水期,为实施节水灌溉提供了实验依据;冬小麦耗水量与环境因子有明显的相关关系,其统计规律可供地下水浅埋区区域灌溉预测参照应用。  相似文献   

16.
甘肃省小麦水分平衡及其时空分布模式   总被引:5,自引:0,他引:5  
以县域为基本单元,采用农田水量平衡模型,对甘肃省1961至2001年冬、春小麦自然降水条件下的水分平衡进行了逐月计算,并对其时空分布模式进行了研究。结果表明:甘肃省多年平均冬小麦需水量为464.47mm,亏水量144.42mm,盈水量3.75mm;春小麦需水量为443.83mm,亏水量262.87mm,盈水量0.00mm。降水不能满足小麦生长的需求,亏水是其水分平衡的首要特征;5~6月是甘肃省冬、春小麦的亏水高峰期,且冬小麦盈亏水量的稳定性低于春小麦;全生育期冬小麦以中度水分亏缺频率为最高,春小麦则以重度为主;甘肃省冬、春小麦的需水量、亏水量与水分亏缺率均呈由东南向西北递增的趋势。  相似文献   

17.
秸秆覆盖下的夏玉米蒸散、水分利用效率和作物系数的变化   总被引:29,自引:0,他引:29  
农业用水占华北水资源的70%以上,提高农业用水的效率对华北水资源安全具有重要意义。在节水农业研究中,利用农艺节水提高农田水分利用效率是节水农业的重要组成部分,其中减少农田无效棵间蒸发耗水和优化供水制度是主要的农艺节水措施。夏玉米是华北太行山山前平原的主要作物之一,一般在冬小麦收获前的5~7天套种在其中,以延长夏玉米的生育期。随着联合收割机的广泛应用,冬小麦收获后的秸秆直接覆盖夏玉米,对夏玉米的农田蒸散特别是苗期的蒸散产生影响;夏玉米生长在6~9月的雨季,一般年份降水能够满足夏玉米的需水要求,但夏季降水的分布变异较大,再加上近6年来的夏季干旱,使灌水对夏玉米的高产至关重要。为了提高夏玉米的农田水分利用效率,本研究的目的是建立秸秆覆盖下的夏玉米优化供水制度和研究秸秆覆盖对减少棵间无效耗水的影响及秸秆覆盖下的夏玉米作物系数的变化,为制定秸秆覆盖下的夏玉米优化供水制度提供依据。2年的实验结果显示,秸秆覆盖下的夏玉米产量在8000kg/ha,总蒸散量在390mm,水分利用效率在2.2kg/m3。干旱年份,夏玉米在灌四水的条件下产量最高,再增加灌水量,产量减少。水分利用效率随着灌水量的增加有所递减。  相似文献   

18.
河北南部地区资源、环境、发展初析   总被引:3,自引:0,他引:3  
吴凯 《地理科学进展》2002,21(5):477-483
河北南部地区山前平原区农业气候条件适于夏玉米的生长 ,黑龙港地区适于棉花的生长。本区水资源匮乏 ,地下水超采严重。浅层地下水超采模数为 8.0 1× 1 0 4 m3/( km2 ·a) ,深层地下水为 2 .5 8× 1 0 4 m3/( km2·a)。全区水资源利用的综合边际效益以廊坊市最高 ( 2 6.68元 /t) ,保定市最低 ( 1 4.85元 /t) ,两者之比为 1 .80。区内地下水降落漏斗与地面沉降等环境地质灾害频繁 ,1 998年浅层地下水漏斗区面积为 0 .5 4× 1 0 4 km2 ,深层地下水为 1 .5 9× 1 0 4 km2。地下水、粮食和蔬菜受到农药残留、过量化肥的污染。本区 2 0 1 0水平年外流域调水将占可供水量的 2 3.9% ,但缺水率仍达 36.2 %。若全区通过发展工程节水 (提高综合节水率 3.2 % )、实施适水种植 (冬小麦播种面积下调 7% ) ,利用水分胁迫处理 (减少一次灌溉 )等节水措施 ,则比 1 999年节水 1 7.2 %。  相似文献   

19.
Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diurnal variation of surface energy fluxes and CO2 flux for maize showed the inverse “U” type. The average peak fluxes did not appear at noon, but after noon. The average peak CO2 flux was about 1.65 mg m-2 s-1. Crop water use efficiency (WUE) increased quickly in the morning, stabilized after 10:00 and decreased quickly after 15:00 with no evident peak value. The ratio of latent heat flux (λE) to net solar radiation (Rn) was always higher than 70% during winter wheat and maize seasons. The seasonal average ratio of sensible heat flux (H) divided byR n stayed at about 15% above the field surface; the seasonal average ratio of conductive heat flux (G) divided by Rn varied between 5% and 13%, and the averageG/R> n from the wheat canopy was evidently higher than that from the maize canopy. The evaporative fraction (EF) is correlated to the Bowen ratio in a reverse function.EF for winter wheat increased quickly during that revival stage, after the stage, it gradually stabilized to 1.0, and fluctuated around 1.0. EF for maize also fluctuated around 1.0 before the later grain filling stage, and decreased after that stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号