首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 431 毫秒
1.
粗糙度研究的现状及展望   总被引:29,自引:6,他引:23  
李振山  陈广庭 《中国沙漠》1997,17(1):99-102
略述边界层剪切湍流各区域速度廓线规律和地面粗糙分类后,对各种地面粗糙度(包括沙质粗糙度、动力粗糙度、植被粗糙度、复杂地面粗糙度、有效粗糙度)的研究现状和计算方法作了简要综述,认为动力粗糙度算式中系数A和植被或有效粗糙度算式中位移高度d将会是进一步研究的重点。  相似文献   

2.
空气动力学粗糙度的物理与实践意义   总被引:33,自引:9,他引:24  
刘小平  董治宝 《中国沙漠》2003,23(4):337-346
空气动力学粗糙度是风沙边界层的一个重要参数。文章回顾了空气动力学粗糙度概念的由来;用流体力学的量纲分析法和数学方法,从两个不同的角度推导了空气动力学粗糙度;阐述了空气动力学粗糙度的物理与实践意义;简明介绍了空气动力学粗糙度的分类和各种不同下垫面空气动力学粗糙度的主要研究成果,就目前研究中存在的问题、研究趋势等方面做了探讨。  相似文献   

3.
空气动力学粗糙度是衡量地球表面与大气之间动量和能量交换的重要参数,对于研究各种地表过程和气候变化至关重要。遥感技术作为远距离监测手段,研究空气动力学粗糙度时其优势在于高时效、高经济效益,能实现区域或大空间尺度的动态监测,因此利用遥感技术估算空气动力学粗糙度成为热点问题。通过系统阐述近年来国内外空气动力粗糙度研究进展,重点介绍了利用遥感技术估算植被下垫面空气动力学粗糙度的方法,对各种估算方法的优势和不足进行了总结,分析了气象因素和地表粗糙元形态特征因素对空气动力学粗糙度的影响,进而对遥感技术在该领域的应用做出展望,旨在为空气动力学粗糙度遥感监测的研究提供思路。  相似文献   

4.
沙粒跃移云及Magnus力对床面有效粗糙度的影响   总被引:7,自引:5,他引:2  
黄宁  郑晓静 《中国沙漠》2003,23(6):616-620
建立了考虑Magnus效应的、吹过平坦沙面的稳定风场中风与跃移沙粒相互耦合的风沙跃移云模型,并通过数值模拟研究了风沙跃移运动对床面粗糙度的影响。结果表明,跃移沙粒对风速的影响类似于床面粗糙度的影响,有效粗糙度随摩阻速度的变化关系可用二次函数表征;Magnus力对有效粗糙度有明显的影响,但这种影响并不改变有效粗糙度与摩阻风速之间的二次函数关系。  相似文献   

5.
陶旸  汤国安  王春  杨昕 《地理研究》2011,30(6):1066-1076
针对地形粗糙度模型种类繁多、概念相近和模型混杂,以及难于针对具体研究样区恰当选取等问题,提出一种基于语义规则判别和剖面特征匹配的粗糙度模型评价算法.通过对面积比率模型、矢量粗糙度模型、表面粗糙度因子、基于标准差计算的统计模型等四类八种常用地形粗糙度模型的测试表明,该算法对粗糙度剖面的转折特征和局部地形变异特征敏感,能够...  相似文献   

6.
荒漠区粗糙度长度的确定及在模式中的应用   总被引:2,自引:0,他引:2  
陈世强  吕世华 《中国沙漠》2013,33(1):174-178
利用2005年进行的“绿洲系统能量与水分循环补充观测试验”第3阶段的观测资料计算了金塔试验区内戈壁和沙漠的动力学和热力学粗糙度长度,沙漠和戈壁的动力粗糙度长度分别为1.81×10-3m和1.64×10-3 m,与黑河试验结果基本一致,均为沙漠的动力粗糙度大于戈壁。试验区内沙漠和戈壁的热力粗糙度长度分别是0.28×10-3 m和0.62×10-3 m。将计算得到的粗糙度长度代入Noah陆面模式,模拟的戈壁、沙漠上的地表温度和感热通量同观测值较为一致,优于原粗糙度长度的模拟结果,大大提高了该模式在沙漠、戈壁特殊区域的模拟能力,有利于将耦合了Noah模式的中尺度模式更好地应用到绿洲系统的研究中。  相似文献   

7.
耕作土壤表面的空气动力学粗糙度及其对土壤风蚀的影响   总被引:13,自引:4,他引:9  
土壤表面粗糙度是影响耕作土壤抗风蚀能力的一个重要因素。根据风速廓线计算得到的空气动力学粗糙度,可以简捷而有效地刻画土壤表面的空气动力学性质。风洞模拟实验表明,耕作土壤表面的空气动力学粗糙度主要取决于暴露地表的土块直径,在土块大致均匀分布的条件下,直径愈大,空气动力学粗糙度愈大。土壤风蚀速率则随空气动力学粗糙度的增大而迅速减小,二者具有良好的相关性。  相似文献   

8.
塔克拉玛干沙漠肖塘地区空气动力学粗糙度分析   总被引:8,自引:2,他引:6  
利用塔克拉玛干沙漠北部肖塘地区梯度自动站2007年1月1日至2007年5月31日的观测数据,计算出该区域中性条件下粗糙度范围是1.00×10-11~1.65×10-3 m,平均粗糙度为6.05×10-5 m,接近沙粒粒径的1/30,与平坦沙面粗糙度相似。摩擦速度的范围是0.14~2.33 m·s-1,平均值1.24 m·s-1。粗糙度随下垫面性质变化明显,与稳定度呈正相关,与风速呈负相关,摩擦速度随粗糙度增大而减小。  相似文献   

9.
地表粗糙度是影响雷达后向散射系数的重要因素。该文在基于SAR影像反演地表土壤水分的过程中,考虑到地表粗糙度的野外测量误差、取值范围和雷达入射角等方面的影响,统计了裸土、农用地和草地等几种典型地表的粗糙度测量数据,以此限定AIEM模型的输入参数范围。首先,利用AIEM模型模拟雷达后向散射系数与粗糙度、土壤水分之间的关系,构建了基于曲面拟合思想的、与入射角相关的组合粗糙度参数,并以此为基础利用Envisat ASAR双极化数据(VV、VH)建立了土壤水分反演模型。经实测数据验证,在不同入射角范围内,基于该文建立的模型得到的土壤水分反演结果与实测值都有良好的相关性。与其他形式的组合粗糙度参数进行对比,该文提出的模型反演精度较高,能够适用于入射角范围在(5°,65°)内的SAR影像的反演。  相似文献   

10.
北极冰面融池对于研究北极海冰质量平衡、海洋混合层热收支和盐量收支等具有重要意义。为了获得准确的融池覆盖率,本研究提出了一种利用无人机进行北极海冰融池及冰面粗糙度信息提取的方法。在第7次中国北极科学考察期间,利用无人机获取加拿大海盆周边浮冰区冰面航拍影像,针对海冰航拍图像特殊性改进了基于暗原色先验的图像去雾算法,对拼接后的航拍图像进行融池识别,计算得到航拍区域的融池覆盖率。同时利用航拍影像三维建模得到海冰表面相对高程和冰面粗糙度,继而对融池覆盖率和海冰表面粗糙度分布规律进行研究。结果表明,在本次航拍区域,海冰粗糙度大的区域具有更多小面积的融池,而融透的、面积大的融池多出现在粗糙度小的平整冰区。  相似文献   

11.
 空气动力学粗糙度、零平面位移高度是植被覆盖地表的两个重要的空气动力学特征参数,利用数值计算的方法,运用Matlab软件编程,对内蒙古四子王旗草地地表的空气动学粗糙度、零平面位移高度进行模拟计算、绘图及分析。得到了在8种植被密度和6种植被高度情况下摩阻速度、空气动学粗糙度、零平面位移高度与风速的关系,并与野外实验数据进行对比分析,发现模拟值可以很好的反映空气动力学参数的性质。进而分别得到了包括植被密度的风速与摩阻速度、空气动学粗糙度的关系式和包括植被高度的风速与摩阻速度、空气动学粗糙度的关系式,这有助于进一步研究该地区草地风沙运动机理,以及床面与近地层气流相互作用的力学性质。  相似文献   

12.
为了进一步理解粗糙床面阻力效应,减小空气动力学粗糙度测试中的不确定性,依据风沙风洞测试的3类粗糙元(细高粗糙元、孔隙粗糙元和粗矮粗糙元)覆盖的39个粗糙床面在不同自由风速下的风廓线数据,提出了风廓线统一对数区的概念并得出以下结论:粗糙床面风廓线统一对数区范围约在0.1~0.3 h至边界层顶部,空气动力学粗糙度是变应力层内床面对气流阻力效应的垂向平均;在统一对数区内拟合的空气动力学粗糙度的垂向变异分为先增后减型(概率为71%)、减小型(20%)和增加型(9%)等类型,而采用统一对数区的空气动力学粗糙度可以避免垂向变异带来的不确定性;统一对数区的无量纲空气动力学粗糙度随粗糙元密度以幂函数形式增加的特征,进一步表明该指标能更好地表征粗糙床面对气流阻力效应;尾涡流风廓线统一对数区的空气动力学粗糙度约为街流区1~5倍,表明街流区风廓线统一对数区的空气动力学粗糙度是模拟跃移起动更合适的参数。  相似文献   

13.
内蒙古拐子湖地区风沙运动若干参数计算   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用内蒙古拐子湖地区风沙观测场2011年3~5月的沙尘暴强化观测资料,分析计算了巴丹吉林沙漠北缘平坦沙地的地表粗糙度、临界摩擦速度、临界起沙风速等风沙运动关键参数。初步结论如下:观测期间地表粗糙度的变化范围为1.0×10-7~ 9.0×10-1cm,平均粗糙度为0.942 cm;临界摩擦速度约为0.34 m/s;2 m高度的起沙风速约为4.6 m/s。  相似文献   

14.
梅凡民  蒋缠文  江姗姗  王涛 《中国沙漠》2012,32(6):1534-1541
 为了全面地揭示粗糙元的所有几何参数的交互作用对空气动力学粗糙度的影响,利用风洞实验研究了粗糙元高度、密度、高度与间距比、孔隙度和方向比率等几何参数交互作用对空气动力学粗糙度的影响。结果表明,密实和孔隙粗糙元的无量纲空气动力学粗糙度(空气动力学粗糙度度/粗糙元高度)均可表示为粗糙元密度/等效密度的正比例函数,而比例系数反映了粗糙元几何参数交互作用。据此,该研究发展了一个全面反映粗糙元高度h、密度/等效密度λ、高度与行间距比Sp和方向比率AR等几何参数交互作用的空气动力学粗糙度模式:Z0h=-0.0028+0.5403S0.32p·AR-0.07·λ。该模式改进了模拟的精度,扩大了适用范围。  相似文献   

15.
塔中地区土壤风蚀的影响因子分析   总被引:4,自引:2,他引:2  
以塔中地区为例,利用野外观测数据和通过对比分析,论述了气候、地表粗糙度(包括植被覆盖)以及地表土壤特性等因子对土壤风蚀的影响,并对这些影响因子进行了量化研究。结果表明:塔中地区的年平均风蚀气候因子指数C为28.3,从季节分布上来说,夏季最大为13.9,冬季最小仅为0.7,C值与风速有着密切的指数关系;塔中地区的地表粗糙度Z0平均为6.32×10-5m,地表粗糙度小,加重了该地区的土壤风蚀程度;塔中地区的土壤类型特点、地表土壤平均粒径小、缺乏植被覆盖以及地表土壤含水率低为该地区土壤风蚀的发生提供了良好的条件。塔中地区土壤风蚀的现状是该地区气候、地表粗糙度以及地表土壤特性等因子共同作用的结果。  相似文献   

16.
藻类结皮自然恢复后抗风蚀特性研究   总被引:6,自引:2,他引:4  
从风沙物理学的角度出发,通过风洞实验研究藻类结皮对起动风速、摩阻风速、空气动力学粗糙度等的影响,探讨未破坏藻类结皮和一定程度破坏后自然恢复藻类结皮抗土壤风蚀特性。实验结果表明:无论是完好结皮还是自然恢复后的结皮,都可以提高结皮的起动风速、摩阻风速和空气动力学粗糙度长度。结皮的起动风速大于17 m·s-1,摩阻风速在0.62~1.21 m·s-1之间,空气动力学粗糙度长度在0.03~0.13 cm之间。同时给出了摩阻风速和风速之间以及空气动力学粗糙度长度和摩阻风速之间的经验公式。  相似文献   

17.
王晓  张伟民 《中国沙漠》2014,34(4):943-948
本文应用流体计算软件FLUENT6.3,采用非结构化网格划分技术模拟了气流特征和砾石几何参数对床面空气动力学粗糙度的影响。结果表明:空气动力学粗糙度(z0)与风速(u)、摩阻速度(u*)之间存在定量关系:z0=a exp(bu/u*)。砾石高度对空气动力学粗糙度的影响显著优于砾石直径,空气动力学粗糙度随砾石密度的变化比较复杂,先增加后减小。FLUENT在模拟风洞砾石床面动力学过程中的成功应用,是我们在研究方法上的一次有益尝试。  相似文献   

18.
戈壁风蚀面与植被覆盖面地表性质粗糙度长度的确定   总被引:9,自引:5,他引:4  
吕萍  董治宝 《中国沙漠》2004,24(3):279-285
以Monin-Obukhov相似性理论为基础, 利用量纲分析法分别推导出不同层结稳定度下确定戈壁风蚀面与植被覆盖面空气动力学参数的物理模型, 并利用该模型研究了粗糙度长度与粗糙元性质, 流经近地层流体特征以及大气层结稳定度之间的关系。得出以下结论: 戈壁风蚀面上空气动力学粗糙度长度与砾石粒径、高度、覆盖度、自由风速、摩擦速度以及大气层结稳定度有关; 植被覆盖面空气动力学粗糙度长度取决于植被类型、植被高度、覆盖度、零平面位移高度、自由风速、摩擦速度以及大气层结稳定度。  相似文献   

19.
严艳梓  汤国安  熊礼阳  方炫 《地理研究》2014,33(8):1442-1456
月球表面粗糙度是揭示月表地貌形态空间分异特征的重要指标,并在一定程度上映射月表地貌的形成与演化机理。运用基于中国“嫦娥一号”卫星获取的DEM数据,提取月球雨海地区的月表粗糙度,并在月球正面地质图数据辅助下,分析月表粗糙度分布特征及其与地质单元岩性以及地质年龄的关系。结果显示:月球雨海地区的粗糙度与地质单元岩性存在较强相关关系,且随着地质年龄的增长,玄武岩单元的粗糙度呈现增大的趋势。此外,在小于7 km的尺度范围内,雨海地区受持续撞击作用的影响,Hurst指数分布在0.7~0.9之间,地形较为粗糙;在更大尺度上,由于受到火山熔岩流充填机制的控制,Hurst指数不断减小,地形不断趋于平缓。  相似文献   

20.
几种典型地表粗糙度计算方法的比较研究   总被引:3,自引:0,他引:3  
本文分别利用最小二乘拟合迭代法、牛顿迭代法、TVM法和Martano法计算2003年长白山森林地表粗糙度。结果表明,Martano法计算结果偏小,其他三种方法结果基本一致。不确定性分析表明,Martano法的不确定性与参与计算的数据量有关。拟合迭代法和牛顿迭代法的不确定性在于,通常假设u*不随观测高度而变化,而实际u*随观测高度变化。若相邻两个观测高度之间的u*变化1%,地表粗糙度计算误差8.3%。TVM法由于参数C1的选取范围为0.9~1.05,引起地表粗糙度不确定性平均值为29.9%。经计算得到长白山森林在各种大气层结条件下的地表粗糙度,拟合迭代法得到的2003年稳定、中性和不稳定条件下的地表粗糙度年平均值分别为2.642、2.103和1.616m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号