首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
The Lamar River watershed of northeastern Yellowstone contains some of the most diverse and important habitat in the national park. Broad glacial valley floors feature grassland winter range for ungulates, riparian vegetation that provides food and cover for a variety of species, and alluvial channels that are requisite habitat for native fish. Rapid Neogene uplift and Quaternary climatic change have created a dynamic modern environment in which catastrophic processes exert a major influence on riverine–riparian ecosystems. Uplift and glacial erosion have generated high local relief and extensive cliffs of friable volcaniclastic bedrock. As a result, steep tributary basins produce voluminous runoff and sediment during intense precipitation and rapid snowmelt. Recent major floods on trunk streams deposited extensive overbank gravels that replaced loamy soils on flood plains and allowed conifers to colonize valley-floor meadows. Tree-ring dating identifies major floods in 1918, ca. 1873, and possibly ca. 1790. In 1996 and 1997, discharge during snowmelt runoff on Soda Butte Creek approached the 100-year flood estimated by regional techniques, with substantial local bank erosion and channel widening. Indirect estimates show that peak discharges in 1918 were approximately three times greater than in 1996, with similar duration and much greater flood plain impact. Nonetheless, 1918 peak discharge reconstructions fall well within the range of maximum recorded discharges in relation to basin area in the upper Yellowstone region. The 1873 and 1918 floods produced lasting impacts on the channel form and flood plain of Soda Butte Creek. Channels may still be locally enlarged from flood erosion, and net downcutting has occurred in some reaches, leaving the pre-1790 flood plain abandoned as a terrace. Gravelly overbank deposits raise flood-plain surfaces above levels of frequent inundation and are well drained, therefore flood-plain soils are drier. Noncohesive gravels also reduce bank stability and may have persistent effects on channel form. Overall, floods are part of a suite of catastrophic geomorphic processes that exert a very strong influence on landscape patterns and valley-floor ecosystems in northeastern Yellowstone.  相似文献   

2.
科尔沁地区现代沙漠化过程的驱动因素分析   总被引:64,自引:36,他引:28  
基于近50a科尔沁地区沙漠化土地发展-再发展-逆转的时空变化的研究结果, 以气候波动和人类活动变化作为主驱动因子, 探讨现代沙漠化过程的驱动因素的作用。近40多年气候的波动在一定程度上直接地通过不同时期的降水-温度组合影响着沙漠化的进程, 间接地通过人类对气候波动的响应而产生的经济活动来加速沙漠化的进程。尽管科尔沁地区的气候驱动因子呈现出有利于沙漠化发展过程的趋势, 但在近10多年来, 这种驱动力的作用被有利于沙漠化逆转过程的驱动力所抵消。人类活动是研究区沙漠化过程中更加活跃的驱动因子, 体现在土地利用方式的转变和强度的增加, 以及由此而产生的对自然植被群落毁灭性的破坏而加速了沙漠化的进程。以土壤风蚀为例, 这种加速可以是自然条件下的4~10倍; 随着沙漠化程度的加剧, 所产生的在土壤养分、生物多样性和生物生产量等方面退化的加速也与自然条件下的情况相差3~10倍以上。同样是人类活动, 在合理的土地利用、采取各种沙漠化防治措施的情况下, 又可使沙漠化过程逆转。从这一点上来说, 人为驱动因素应是起绝对主导作用的。  相似文献   

3.
黄土高原侵蚀环境与侵蚀速率的初步研究   总被引:27,自引:2,他引:25  
黄土高原的侵蚀是一个地质过程.晚更新世以前高原已经过三个大的侵蚀堆积旋迥,主要沟谷系统和黄土地貌的塬梁峁格局已经形成.全新世以来黄土的堆积逐渐减缓,而侵蚀则进入新的发展时期.在自然因素和人类活动的共同作用下,土壤侵蚀加剧.根据侵蚀一堆积相关原理,利用黄河下游不同时期发育的冲积扇沉积模式,估算了全新世以来自然侵蚀速牵为7.9%,由于人类活动而引起的加速侵蚀的速率逐渐递增,至今已达到25%.  相似文献   

4.
近30年来青海省风蚀气候侵蚀力时空差异及驱动力分析   总被引:3,自引:0,他引:3  
青藏高原气候寒冷、多大风,冻融、风化和风蚀作用强烈,易发生土壤风蚀。气候对土壤风蚀的影响可用风蚀气候因子指数(C)度量。基于联合国粮农组织(FAO)提出的C计算方法,根据1984-2013年间连续完整的青海省气象站地面观测数据,应用地理加权回归模型(GWR)、重心及其转移模型,并结合本文定义的有效敏感性指数、有效影响面积等指标,得到全省风蚀气候侵蚀力及其影响因子的时空分布及其演化规律,并对其驱动力和机理进行了初步分析。结果表明:30年来,全省风蚀气候侵蚀力总体特征是西北高东南低并呈下降趋势,风蚀气候侵蚀力强的区域明显向西南扩展,20世纪80年代是柴达木盆地,90年代扩展到青南高原西北部边缘,21世纪基本涵盖了青南高原的西部;风速是影响风蚀气候侵蚀力的主导因子,其有效敏感区重心从柴达木盆地西南部边缘,移动到海拔较高的青南高原西部地区,这与高原近地面气旋系统中心总体移动趋势相反;其次是气温,其有效敏感区重心从海拔较低的青海省中部地区向海拔较高的青南高原移动,这与青南高原地区的海拔梯度式增温规律有关,即从高原边缘向高原腹地升温,且海拔越高,增温越快;降水主要影响柴达木盆地的侵蚀力,其有效敏感区重心向东南扩展,这可能与高原夏季风进退有关。研究结果可为青藏高原土壤风蚀灾害的预防、评估以及预测提供区域性差异化的技术支持与理论指导,也可为青藏高原乃至全球生源要素(C、N、P、S等)循环的大尺度驱动力研究提供新的研究视角。  相似文献   

5.
长江流域水灾与生态环境变迁的历史地理学思考   总被引:2,自引:0,他引:2  
历史上长江洪涝灾害发生的特点是越到近期越频繁,其原因有自然的,也有人为的,其中人为的原因是造成水灾频率增加的最重要的因素。因此,要减弱长江水灾发生的频率,就必须综合治理水土流失、控制人口增长、实施高科技减灾工程,从而实现长江流域社会经济的可持续发展。  相似文献   

6.
Climate, lithology, soil and especially, intense land use/cover changes, make SE Spain very vulnerable to runoff generation and water erosion leading to loss of nutrients and organic matter and to infrequent but devastating floods, reservoir siltation and mass failures. This susceptibility has led to heavy economic investment and research efforts since the 1980s, making this region a worldwide reference for understanding the hydrology and geomorphology of semiarid ecosystems. Runoff and soil erosion have been intensively studied throughout the last decades in various natural ecosystems as well as in abandoned farmlands. Research has considered a wide range of methods and spatial and temporal scales. This paper reviews the methods and data describing runoff generation and water erosion, synthesising the key processes involved, rates, thresholds and controlling factors from a scale-dependent perspective. It also identifies the major gaps in current knowledge to provide recommendations for further research towards solutions that reduce the negative impacts of erosion. Research in SE Spain has contributed significantly to a better understanding of the effect of spatial and temporal scale on runoff and sediment yield measurements, and highlighted the important role of distinct erosion and sediment transport processes, hydrologic connectivity, spatial and temporal patterns of rainfall, the occurrence of extreme events and the impacts of land use changes. The most effective ways and challenges to predict runoff, soil erosion and sediment yield at the catchment scale are also discussed.  相似文献   

7.
Wind erosion is a major contributor to land degradation and desertification. According to the Global Assessment of Human Induced Soil Degradation, the dryland territories of Mongolia are significantly affected by wind erosion. We used the wind erosion equation model in an ArcGIS environment to evaluate wind erosion across Mongolia. The individual factors of the wind erosion equation were parameterized using the following datasets: (a) monthly climatic data from 45 meteorological stations; (b) 16-day composites of MODIS Normalized Difference Vegetation Index data; (c) a SRTM DEM with a 90 m spatial resolution; and (d) the soil map of Mongolia. The results revealed the significant influence of aridity on wind erosion. The desert and semi-desert ecosystems were more vulnerable to wind erosion, hence more affected. The map of wind erosion revealed three major wind erosion regions where the maximum soil loss of 15–27 t/(hm2?a) was observed. In general, the wind erosion potentials for the entire country of Mongolia are 15–27 t/(hm2?a) in the deserts and semi-deserts, 10–15 t/(hm2?a) in the dry steppes and 5–10 t/(hm2?a) in the steppe regions.  相似文献   

8.
黄土高原侵蚀期研究   总被引:22,自引:12,他引:10  
赵景波  杜娟  黄春长 《中国沙漠》2002,22(3):257-261
黄土高原在沉积的同时也存在着侵蚀,主要是流水、重力等因素造成的。这种侵蚀会受到气候、构造运动以及人类活动控制。资料显示,黄土高原存在3种基本的侵蚀期,一是气候侵蚀期,二是构造侵蚀期,三是人为因素侵蚀期。此外还有气候与构造共同作用产生的侵蚀期和构造与人类共同作用产生的侵蚀期。温湿期风尘堆积少,降水量增多,流水动力增强,是黄土高原理论上的侵蚀期。构造抬升引起侵蚀基准面下降,进而导致黄土高原加快侵蚀,出现构造侵蚀期。人类活动破坏了黄土高原的植被和土层结构,导致黄土高原侵蚀加剧,从而出现了人类因素引起的现代侵蚀加速期。在黄土发育的冷干期,由于植被稀疏,侵蚀量大于温湿期,但堆积量远大于侵蚀量。要改变现代侵蚀状况,就应当加强黄土高原生态环境治理。  相似文献   

9.
根据青藏铁路沿线26个行政单元自然灾害的历史记录,对沿线的洪水、山洪、地震、雪灾、风灾以及滑坡、泥石流和崩塌等自然灾害进行量化分析,通过自然灾害灾种、频次的统计和聚类分析将青藏铁路沿线划分为6个自然灾害组合分区,其中,拉萨河谷路段主要以洪水、滑坡灾害为主;羌塘高原路段主要以雪灾、风灾为主,青南高原路段以雪灾、地震灾害为主;柴达木盆地路段以风灾、地震等灾害为主;青海湖盆地路段以洪水、雪灾为主;湟水谷地路段以洪水、山洪、滑坡灾害为主。拉萨河谷路段和湟水谷地路段的自然灾害类型组合具有相似性。  相似文献   

10.
中国南方岩溶区土地石漠化的成因与过程   总被引:18,自引:2,他引:16  
中国南方岩溶区是石漠化广为发展的脆弱生态区域。南方岩溶区土地石漠化的起因既有自然因素,也有人为因素。在地质历史时期其自身环境孕育和存在着自然石漠化过程,在历史时期—现代自然石漠化过程又叠加了人为石漠化过程,人为活动加速、加剧了石漠化的发展。清朝初、中期是人为活动影响石漠化的重要转折时期,此后人为因素作用比重逐渐超过自然因素的作用比重。岩溶区土地石漠化过程是由植被退化丧失过程、土壤侵蚀过程、地表水流失过程、基岩溶蚀侵蚀过程、土地生物生产力退化过程合成的地表生态过程,其实质是形成石质荒漠的土地退化过程。  相似文献   

11.
Severe erosion, initiated by climatic changes during the Late Pleistocene-Early Holocene period and resultant declines in dust deposition, causes the formation of waterfalls during the winter floods in many wadi systems in the central Negev desert of Israel. In some areas, erosion of the original loess substrate has been complete, so that the underlying rock has been exposed. We examined the effects of this erosion in four wadis in the central Negev desert on soil nutrients, plant community structure and plant quality. We predicted that erosion has caused reductions in soil nutrients. Reductions in soil nutrients should result in reductions in plant cover. Furthermore, reduced soil nutrient availability should cause reductions in the nutrient status and quality of the plants growing there. In addition to the loss of biodiversity that may result, this erosion may result in economic hardship for the Bedouin peoples whose herds depend on these resources. In this study, there were significant negative effects of erosion on soil organic carbon, nitrate nitrogen and water-holding capacity, but not on soil phosphorus, conductivity or pH. Furthermore, there was a negative effect of soil erosion on an overall measure of soil quality derived from a principal components analysis in three of the four wadis we studied. Erosion resulted in an increase in plant species richness and significantly altered plant community structure in eroded areas of wadis. Increased plant species richness in eroded sites is consistent with the intermediate disturbance hypothesis of plant community structure. Plants growing in eroded areas did not differ in two quality indices (nitrogen content and digestibility), although plants typical of eroded areas had significantly lower levels of common digestion inhibitors (total polyphenols) and toxins (alkaloids) than plants from undisturbed sites. These last-mentioned results are contrary to our prediction and are consistent with the notion that plants growing in disturbed (e.g. eroded) sites maximize growth at the expense of investments in defense.  相似文献   

12.
Debris flows and debris floods cause frequent geomorphic hazards, even in the mid‐mountains of Central Europe. In the Hrubý Jeseník Mountains (Eastern Sudetes, Czech Republic), strong anthropogenic interventions have created specific conditions for erosion, transport and accumulation of material released by debris flow/flood events. We present a detailed spatio‐temporal reconstruction of the hydro‐geomorphic process activity in two adjacent sub‐catchments using dendrogeomorphic methods applied to the steep, narrow channels. An analysis of 172 sampled trees [Picea Abies (L.) Karst.] revealed 14 torrential events since 1943 in the Klepá?ský stream sub‐catchment and 11 events since 1897 in the Keprnický stream sub‐catchment. Identical events were identified in 1965, 1991, 1997, 2002 and 2010. The event return periods were comparable with return periods from the foothills of the European Alps. A higher frequency of events in the first sub‐catchment may be caused by the presence of a deep‐seated landslide, steeper slopes and a higher susceptibility to shallow slope deformations. Different spatial patterns of events were presented using the Kernel Density analysis in ArcMap 10.1. Clusters of affected trees in the valley floor during the last decades may be due to increased erosion below the check dams and increased accumulation above. The presence of check dams and slope stabilization works since the 1960s has mitigated the processes in several gullies, but due to the current non‐interventional management, the risk of their damage is increasing, particularly when increased activity is observed in the adjacent unprotected gullies.  相似文献   

13.
Environmental (geomorphological, hydrological and ecological) processes are controlled by rainfall, particularly in the Mediterranean, semi-arid and arid regions. Rainfall was analyzed using the concept of rain-spells, i.e., a period of successive rain days preceded and followed by at least one day without rainfall. Daily data from 13 stations along a climatic transect extending from the Judean Mountains with a Mediterranean climate to the Dead Sea arid region in Israel were studied. Rain-spell characteristics (number, yield and duration), based on these data, are presented for different rainfall thresholds, which might be used for different environmental processes such as rock weathering, soil organic matter dynamics, landslides, overland flow and floods and soil erosion. Three estimation models have been developed in order to predict the mean annual Number of Rain-Spells (NRS), mean Rain-Spell Yield (RSY), and mean Rain-Spell Duration (RSD) for the mean annual rainfall and for any given rainfall threshold. These models can be used for current climatic conditions and for scenarios in which the rainfall total changes.  相似文献   

14.
There are both internal and external controlling factors leading to slope instability and susceptibility to mass movement processes. This paper explores which external climatic variables of different temporal scales influence the occurrence of high-magnitude landslide events. The investigations were focused on the Wellenkalk-cuesta scarp in the Thuringia Basin (Thüringer Becken) in central Germany. The cuesta scarp is composed of a densely jointed limestone caprock (Wellenkalk), and impermeable mudstones and marls of the Upper Bunter Sandstone (Röt) in the lower part of the slope. Mass movements are a typical feature of the Wellenkalk-scarp. The entire scarp slope length (1000 km) has been systematically mapped and investigated in a comprehensive research project in order to provide reliable information on the spatial distribution and control of the mass movements. More than 20% of the scarp slope has been influenced by various types of Holocene mass movements with strong differences in spatial frequencies. Sixteen high-magnitude landslides (Sturzfließungen) were identified by field inspection and mapping of slope geomorphology. Information on locations, morphometric characteristics, stratigraphic positions and rainfall-related attributes of the scarp slopes affected by the large landslides is presented.Mean annual rainfall amounts decrease from more than 800 mm in the western part of the basin to less than 550 mm in the east. Meteorological statistics on the spatial distribution of heavy rainfall intensities of different durations and return periods show that greatest precipitation intensities in short events (1 h) are reached at the western margin. Differences in rainfall intensities between the western and eastern parts decrease with increasing duration of the events. Where available, event-related meteorological information was collected. The spatial distribution of the landslides is most closely mirrored in the pattern of mean annual precipitation, though this variable is generally not thought to be a satisfactory or reliable climatic controlling factor. No landslides occur below a threshold value of 700 mm. The empirical data show that some general level of average perennial water input into the slope system seems to be of decisive importance for the occurrence of high-magnitude mass movements. Only when the precondition of a more general hydrological disposition is fulfilled, a direct triggering of high-magnitude mass movements by a short-time intensive rainfall period or event can become effective.  相似文献   

15.
Soil erodibility and processes of water erosion on hillslope   总被引:14,自引:0,他引:14  
The importance of the inherent resistance of soil to erosional processes, or soil erodibility, is generally recognized in hillslope and fluvial geomorphology, but the full implications of the dynamic soil properties that affect erodibility are seldom considered. In Canada, a wide spectrum of soils and erosional processes has stimulated much research related to soil erodibility. This paper aims to place this work in an international framework of research on water erosion processes, and to identify critical emerging research questions. It focuses particularly on experimental research on rill and interrill erosion using simulated rainfall and recently developed techniques that provide data at appropriate temporal and spatial scales, essential for event-based soil erosion prediction. Results show that many components of erosional response, such as partitioning between rill and interrill or surface and subsurface processes, threshold hydraulic conditions for rill incision, rill network configuration and hillslope sediment delivery, are strongly affected by spatially variable and temporally dynamic soil properties. This agrees with other recent studies, but contrasts markedly with long-held concepts of soil credibility as an essentially constant property for any soil type. Properties that determine erodibility, such as soil aggregation and shear strength, are strongly affected by climatic factors such as rainfall distribution and frost action, and show systematic seasonal variation. They can also change significantly over much shorter time scales with subtle variations in soil water conditions, organic composition, microbiological activity, age-hardening and the structural effect of applied stresses. Property changes between and during rainstorms can dramatically affect the incidence and intensity of rill and interrill erosion and, therefore, both short and long-term hillslope erosional response. Similar property changes, linked to climatic conditions, may also significantly influence the stability and resilience of plant species and vegetation systems. Full understanding of such changes is essential if current event-based soil erosion models such as WEPP and EUROSEM are to attain their full potential predictive precision. The complexity of the interacting processes involved may, however, ultimately make stochastic modelling more effective than physically based modelling in predicting hillslope response to erodibility dynamics.  相似文献   

16.
ABSTRACT. Hazardous processes, including floods, landslides, soil erosion, and debris flows, are common in the Himalaya. Deforestation has been held responsible for increasing risk from such hazards in the Indian context for more than a century. The deforestation‐hazard linkage in the Kullu District of Himachal Pradesh is examined. Evidence suggests that the extent of forest cover has altered little over 150 years and that hazardous processes recur in much the same locations, with similar frequency and magnitude, except where road construction has increased slope instability. Nonetheless, population growth and economic development, especially since 1990, have increased vulnerability to hazards.  相似文献   

17.
Several rainstorms with strong erosional effects have been recorded in Scandinavia during recent decades. The erosion occurs by the release of rapid mass movements on mountain slopes or through fluvial incision and bank collapse along streams and rivers. Various factors, such as terrain characteristics and seasonal timing of the rainstorm event, are thought to favour the predominance of either of the two types of erosion for particular events. A new example of this variable impact of rainstorms is briefly described, and related research issues are outlined.  相似文献   

18.
山洪泥石流风险评估与风险管理理论与方法   总被引:1,自引:1,他引:0  
崔鹏  邹强 《地理科学进展》2016,35(2):137-147
山洪泥石流是中国常见的自然灾害,充分认识其形成机制与潜在风险是防灾减灾的关键。本文阐述了山洪泥石流形成机理,以及风险分析与管理的方法和内容,系统认识了地表产流流量激增、土体破坏物质供给激增、沟道堵塞体级联溃决流量放大和动床侵蚀规模增大等4个山洪泥石流的形成过程,介绍了基于动力过程的山洪泥石流风险评估方法和承灾体易损性评估方法,构建了基于灾害动力过程的风险评估与风险制图方法。进而,基于风险评估结果,提出可用于具体灾害点减灾的风险管理内容和风险调控技术、灾害防治的工程与非工程措施与制技术方案。最后,重点讨论了包括灾害风险预测、临灾预案、灾害防治工程方案等内容的风险处置对策,并形成一套基于山洪泥石流动力过程的风险评估与风险管理理论与方法体系。  相似文献   

19.
遥感与GIS在东亚飞蝗灾害研究中的应用   总被引:9,自引:1,他引:8  
蝗灾属于毁灭性的生物灾害,它和水灾、旱灾一起构成人类社会的三大自然灾害,一旦爆发,对国家粮食安全、农民增收、社会安定可造成严重的影响。将遥感与GIS结合,对蝗虫生境特征、历史蝗灾记录、蝗害发生时有关数据进行集成和分析,可提供蝗灾时空变化、蝗灾范围、蝗灾程度、灭蝗的最佳时段等重要信息。本文重点论述遥感与GIS在蝗灾中的应用,以遥感反演的温度和水分为例来讨论蝗灾前后生境的变化状况,依靠遥感等高新技术实现飞蝗灾害监测的信息化。信息化监测与防蝗站观测相结合的方法已经成为监测蝗灾发生的最有效途径  相似文献   

20.
Surface mass redistribution within the Earth system, especially in the atmosphere, oceans, continents and ice sheets, causes the position of the centre of mass to vary in a reference frame attached to the solid Earth. Space techniques are now precise enough to measure the centre of mass motion. Here we present a determination of the centre of mass coordinates at regular monthly intervals using DORIS data on SPOT‐2, SPOT‐3 and Topex–Poseidon (1993–1997) and laser data on Lageos‐1 and Lageos‐2 (1993–1996). The amplitude and phase of the space‐geodesy‐derived annual cycle for each coordinate are further compared to estimates based on surface mass redistribution at the Earth surface derived from various climatic data sources: surface pressure, soil moisture, snow depth and ocean mass variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号