首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Global and regional environmental changes such as land use and climate change have significantly integrated and interactive effects on forest. These integrated effects will undoubtedly alter the distribution, function and succession processes of forest ecosystems. In order to adapt to these changes, it is necessary to understand their individual and integrated effects. In this study, we proposed a framework by using coupling models to gain a better understanding of the complex ecological processes. We combined an agent-based model for land use and land cover change(ABM/LUCC), an ecosystem process model(PnET-Ⅱ), and a forest dynamic landscape model(LANDIS-Ⅱ) to simulate the change of forest aboveground biomass(AGB) which was driven by land use and climate change factors for the period of 2010–2050 in Taihe County of southern China, where subtropical coniferous plantations dominate. We conducted a series of land use and climate change scenarios to compare the differences in forest AGB. The results show that:(1) land use, including town expansion, deforestation and forest conversion and climate change are likely to influence forest AGB in the near future in Taihe County.(2) Though climate change will make a good contribution to an increase in forest AGB, land use change can result in a rapid decrease in the forest AGB and play a vital role in the integrated simulation. The forest AGB under the integrated scenario decreased by 53.7%(RCP2.6 + land use), 57.2%(RCP4.5 + land use), and 56.9%(RCP8.5 + land use) by 2050, which is in comparison to the results under separate RCPs without land use disturbance.(3) The framework can offer a coupled method to better understand the complex and interactive ecological processes, which may provide some supports for adapting to land use and climate change, improving and optimizing plantation structure and function,and developing measures for sustainable forest management.  相似文献   

2.
Land cover change affects surface radiation budget and energy balance by changing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990–2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990–2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 W/m2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

3.
Land cover change affects surface radiation budget and energy balance by chang- ing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990-2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990-2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 WIm2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

4.
The spatially explicit reconstruction of historical land-cover datasets plays an important role in studying the climatic and ecological effects of land-use and land-cover change(LUCC). Using potential natural vegetation(PNV) and satellite-based land use data, we determined the possible maximum distribution extent of forest cover in the absence of human disturbance. Subsequently, topography and climate factors were selected to assess the suitability of land for cultivation. Finally, a historical forest area allocation model was devised on the basis of the suitability of land for cultivation. As a case study, we used the historical forest area allocation model to reconstruct forest cover for 1780 and 1940 in Northeast China with a 10-km resolution. To validate the model, we compared satellite-based forest cover data with our reconstruction for 2000. A one-sample t-test of absolute bias showed that the two-tailed significance was 0.12, larger than the significant level 0.05, suggesting that the model has strong ability to capture the spatial distribution of forests. In addition, we calculated the relative difference of our reconstruction at the county scale for 1780 in Northeast China. The number of counties whose relative difference ranged from-30% to 30% is 99, accounting for 74.44% of all counties. These findings demonstrated that the provincial forest area could be transformed into forest cover maps well using the model.  相似文献   

5.
近20年来伊洛河流域典型地区森林景观格局动态   总被引:3,自引:0,他引:3  
Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999,six indices were used to analyze spatial patterns and dynamics of forest landscapes of the typical region in the middle of the Yihe-Luohe river basin.These indices include patch number,mean patch area,fragment index,patdch extension index,etc,The results showed that;(1) There was a rapid increase in the number of patch and total area from 1983 to 1999 in the study area,The fragment degree became very high.(2) The area of all the forest patch types had witnessed great changes,The fractal degree of each forest patch type became big from 1983 to 1999 ,The mean extension index of Robinia pseudoacacia forest ,non- forest shrub forest ,sparse forest ,and Quercus species forest in creased rapidly,but that of economic forest became zero ,The fractal dimension each showed that forest coverage has been promoted.(3)The changes of landscape patterns were different in different geomprhic regions.From 1983 to 1999 the vegetation cover area,the gross number and the density of patch,diversity and evenness of landscape were all reduced greatly in gullies and ravines,but the maximum area and the mean area of patch types were increased ,In hilly region,both the forest cover area and the number of patch increased from 1983 to 1999,but the mean area of patch was reduced greatly,In mountain region,even though the area under forest canopy reduced from 1983 to 1999 ,the patch number was increased greatly,the mean area of all patch types was reduced ,the extension index,diversity index and evenness index of landscape were all increased.Furthermore,because of different types of land use,human activtiy and terratin ,the vegetation changes on northern and southern mountain slopes were different.According to these analyses,the main driving forces,such as the policies of management,market economy,influence of human activities etc.are brought out.  相似文献   

6.
1987-2007年土耳其伊斯坦布尔黑海沿岸土地利用变化(英文)   总被引:1,自引:0,他引:1  
Recently,important land use changes have occurred in the Black Sea coastal regions of stanbul due to urban growth and population increases.The objective of this study was to determine changes in land use in the Black Sea coastal regions of stanbul between 1987 and 2007.Landsat 30 m satellite images from 1987 and 2007 are used in the study.The study area is 1000 m in width from the coastline to the land and the study has been carried out using the controlled classification method to classify areas into residential,agricultural,forest,bare land,brush/grassland,and lake/pond land classes.Land use changes between 1987 and 2007 were analysed in detail.Residential areas of the Black Sea coastal regions of stanbul increased by 122% over the two decades.Also an increase of 55% in agriculture areas was observed,while there were decreases of 26% in forest areas and 15% in free land.A 21% increase in the area of brush and grassland took place.Furthermore 79% of the study area was covered by residential areas in 2007.It is probable that pressure on the stanbul coastal regions will continue due to migraton and rapid urbanization.Therefore,Istanbul’s Black Sea coastal regions should be maintained using a sustainable coastal management plan.  相似文献   

7.
贵州猫跳河流域土地利用变化和土壤侵蚀(英文)   总被引:4,自引:2,他引:2  
Due to the extremely poor soil cover, a low soil-forming rate, and inappropriate intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of Southwest China. In order to bring soil erosion under control and restore environment, the Chinese Government has initiated a serious of ecological rehabilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province. This paper explored the relationship between land use and soil erosion in the Maotiao River watershed, a typical agricultural area with severe soil erosion in central Guizhou Province. In this study, we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973, Landsat TM data in 1990 and 2007. Soil erosion change characteristics from 1973 to 2007, and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment. The results indicate that changes in land use within the watershed have significantly affected soil erosion. From 1973 to 1990, dry farmland and rocky desertified land significantly increased. In contrast, shrubby land, other forestland and grassland significantly decreased, which caused accelerated soil erosion in the study area. This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs. Soil erosion also significantly varied among land-use types. Erosion was most serious in dry farmland and the lightest in paddy field. Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion, and conservation practices should be taken in these areas. The results of this study provide useful information for decision makers and planners to take sustainable land use management and soil conservation measures in the area.  相似文献   

8.
In Northeast Thailand, the climate change has resulted in erratic rainfall and tem- perature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study investigated the seasonal variation of vegetation greenness based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region. An assessment of the relationship between climate patterns and vegeta- tion conditions observed from NDVI was made. NDVI data were collected from year 2001 to 2009 using multi-temporal Terra MODIS Vegetation Indices Product (MOD13Q1). NDVI pro- files were developed to measure vegetation dynamics and variation according to land cover types. Meteorological information, i.e. rainfall and temperature, for a 30 year time span from 1980 to 2009 was analyzed for their patterns. Furthermore, the data taken from the period of 2001-2009, were digitally encoded into GIS database and the spatial patterns of monthly rainfall and temperature maps were generated based on kriging technique. The results showed a decreasing trend in NDVI values for both deciduous and evergreen forests. The highest productivity and biomass were observed in dry evergreen forests and the lowest in paddy fields. Temperature was found to be increasing slightly from 1980 to 2009 while no significant trends in rainfall amounts were observed. In dry evergreen forest, NDVI was not correlated with rainfall but was significant negatively correlated with temperature. These re- sults indicated that the overall productivity in dry evergreen forest was affected by increasing temperatures. A vegetation greenness model was developed from correlations between NDVI and meteorological data using linear regression. The model could be used to observe the change in vegetation greenness and dynamics affected by temperature and rainfall.  相似文献   

9.
Runoff generation is an important part of water retention service, and also plays an important role on soil and water retention. Under the background of the ecosystem degradation, which was caused by the vulnerable karst ecosystem combined with human activity, it is necessary to understand the spatial pattern and impact factors of runoff generation in the karst region. The typical karst peak-cluster depression basin was selected as the study area. And the calibrated and verified Soil and Water Assessment Tool (SWAT) was the main techniques to simulate the runoff generation in the typical karst basin. Further, the spatial variability of total/surface/groundwater runoff was analyzed along with the methods of gradient analysis and local regression. Results indicated that the law of spatial difference was obvious, and the total runoff coefficients were 70.0%. The groundwater runoff was rich, about 2–3 times the surface runoff. Terrain is a significant factor contributing to macroscopic control effect on the runoff service, where the total and groundwater runoff increased significantly with the rising elevation and slope. The distribution characteristics of vegetation have great effects on surface runoff. There were spatial differences between the forest land in the upstream and orchard land in the downstream, in turn the surface runoff presented a turning point due to the influence of vegetation. Moreover, the results of spatial overlay analysis showed that the highest value of total and groundwater runoff was distributed in the forest land. It is not only owing to the stronger soil water retention capacity of forest ecosystem, and geologic feature of rapid infiltration in this region, but also reflected the combining effects on the land cover types and topographical features. Overall, this study will promote the development and innovation of ecosystem services fields in the karst region, and further provide a theoretical foundation for ecosystem restoration and reconstruction.  相似文献   

10.
21世纪初中国土地利用变化的空间格局与驱动力   总被引:33,自引:15,他引:18  
Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km × 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.  相似文献   

11.
Tropical forests have been recognized as having global conservation importance. However, they are being rapidly destroyed in many regions of the world. Regular monitoring of forests is necessary for an adaptive management approach and the successful implementation of ecosystem management. The present study analyses the temporal changes in forest ecosystem structure in tribal dominated Malkangiri district of Orissa, India, during 1973–2004 period based on digitized forest cover maps using geographic information system (GIS) and interpretation of satellite data. Three satellite images Landsat MSS (1973), Landsat TM (1990) and IRS P6 LISS III (2004) were used to determine changes. Six land cover types were delineated which includes dense forest, open forest, scrub land, agriculture, barren land and water body. Different forest types were also demarcated within forest class for better understanding the degradation pattern in each forest types. The results showed that there was a net decrease of 475.7 km2 forest cover (rate of deforestation = 2.34) from 1973 to 1990 and 402.3 km2 (rate of deforestation = 2.27) from 1990 to 2004. Forest cover has changed over time depending on a few factors such as large-scale deforestation, shifting cultivation, dam and road construction, unregulated management actions, and social pressure. A significant increase of 1222.8 km2 agriculture area (1973–2004) clearly indicated the conversion of forest cover to agricultural land. These alterations had resulted in significant environmental consequences, including decline in forest cover, soil erosion, and loss of biodiversity. There is an urgent need for rational management of the remaining forest for it to be able to survive beyond next decades. Particular attention must be paid to tropical forests, which are rapidly being deforested.  相似文献   

12.
ABSTRACT. Tropical montane forests are known for their ecological importance. Most montane forests in Ecuador have been converted to agriculture, and those that remain are concentrated on the eastern cordillera. Understanding of land‐use‐land‐cover change in this ecological zone is inadequate. Using remote sensing (Landsat tm, spot ) and fieldwork, we document land‐use‐land‐cover change in two watersheds on Ecuador's eastern cordillera (Cañar Province). During the 1990s the region experienced a 0.58 percent annual rate of deforestation, but two areas within it show active signs of re/afforestation. Although conversion of forest to pasture for cattle grazing continues, human migration to the United States is likely to affect the trajectory of future land‐use‐land‐cover change.  相似文献   

13.
The Atlantic Forest biome has only 13 percent of its pristine vegetation cover left. This article analyzes the consequences of land changes on forest cover in the Paraíba Valley, São Paulo state, Brazil, from 1985 to 2011. Multitemporal satellite image classifications were carried out to map eight land use and land cover classes. The forest cover increased from 2,696 km2 in 1985 to 4,704 km2 in 2011, mostly over areas of degraded pastures. The highest rates of afforestation were observed within protected areas around eucalyptus plantations. On the other hand, deforestation processes were concentrated on areas covered by secondary forests. Socioeconomic changes taking place in particular Brazilian settings, such as industrialization and agricultural modernization, allied to the Paraíba Valley's natural biophysical constraints for agricultural production, have led the region to experience a remarkable case of forest transition.  相似文献   

14.
This study aimed at characterizing land cover dynamics for four decades in Eastern Mau forest and Lake Nakuru basin, Kenya. The specific objectives were to: (i) identify and map the major land cover types in 1973, 1985, 2000 and 2011; (ii) detect and determine the magnitude, rates and nature of the land cover changes that had occurred between these dates, and; (iii) establish the spatial and temporal distribution of these changes. Land cover types were discriminated through partitioning, hybrid classification and spatial reclassification of multi-temporal Landsat imagery. The land cover products were then validated and overlaid in post-classification comparison to detect the changes between 1973 and 2011. The accuracies of the land cover maps for 1973, 1985, 2000 and 2011 were 88%, 95%, 80% and 89% respectively. Six land cover classes, namely forests-shrublands, grasslands, croplands, built-up lands, bare lands and water bodies, were mapped. Forests-shrublands dominated in 1973, 1985 and 2000 covering about 1067 km2, 893 km2 and 797 km2 respectively, but were surpassed by croplands (953 km2) in 2011. Bare lands occupied the least area that varied between 2 km2 and 7 km2 during this period. Overall, forests-shrublands and grasslands decreased by 428 km2 and 258 km2 at the annual average rates of 1% each, whereas croplands and built-up lands expanded by 660 km2 and 24 km2 at the annual rates of 6% and 16% respectively. The key hotspots of these changes were distributed in all directions of the study area, but at different times. Therefore, policies that integrate restoration and conservation of natural ecosystems with enhancement of agricultural productivity are strongly recommended. This will ensure environmental sustainability and socio-economic well-being in the area. Future research needs to assess the impacts of the land cover changes on ecosystem services and to project the future patterns of land cover changes.  相似文献   

15.
基于遥感和GIS的中国20世纪90年代毁林开荒状况分析   总被引:10,自引:0,他引:10  
毁林开荒过程是一种林地变为耕地的土地利用变化过程,可以通过遥感和GIS技术对这一过程进行监测。本文通过覆盖全国的TM影像数据,对20世纪90年代林地转为耕地的面积及其空间分布进行分析,从而对全国毁林开荒过程进行遥感监测。结果表明,该时期有17630km2的林地被开垦为耕地。不同面积等级的开垦过程在不同流域分布也不同:面积小于10hm2和介于10~100hm2的被开垦林地较广泛地分布于各大流域;而面积介于100~1000hm2的被开垦林地主要分布于松辽流域、黑龙江流域和东北东部流域、长江流域、珠江流域和云南省所在流域;大于1000hm2的被开垦林地则几乎全部分布于松辽流域、黑龙江流域和东北东部流域。坡度大于3°的毁林开荒地面积占总面积的295%;对土壤侵蚀背景的分析表明,土壤侵蚀强度以微度和轻度为主  相似文献   

16.
Deforestation and forest degradation are proceeding rapidly in the lowland forests of Indonesian Borneo. Time series analysis of satellite imagery provides an ideal means of quantifying landscape change and identifying the pathways which lead to the changes. This study investigates the forest and land cover changes by classifying Landsat MSS (Multispectral Scanner), TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) images over three time periods (1983–90, 1990–98, and 1998–2000), creating land cover maps for each year and change trajectories for each year-pair. The study area chosen covers an area of 2160 km2 of undulating topography and alluvial plains in the East Kutai District of East Kalimantan Province, which in the 1980s was covered mostly with lowland dipterocarp forest; today the landscape is a patchwork dominated by oil palm and timber plantations and degraded forest. We relate land cover change data to land use allocation and to fire impacts based on fire hotspot distribution and fire damage information. The multidate land cover change trajectories provide an insight into the forest loss and degradation pathways over the 17-year period spanning the first entry of commercial logging concessionaires, followed by a government-sponsored transmigration scheme, government-licensed timber and oil palm plantations and, finally, the devastating fires of 1998. The results show a mean deforestation rate of 42 km2 or 6 per cent per year for 1983–2000, rising to 10 per cent per year for 1990–98; by 2000, 70 per cent of forest initially damaged by fire and drought during the 1982–83 El Niño event was classified as non-forest. Although our study area is perhaps a worst-case scenario in terms of land use planning outcomes, the lessons from this research are directly applicable to scenario prediction for informed forest and land use planning and monitoring.  相似文献   

17.
1990—2010年黄河宁蒙段所处流域土地利用变化   总被引:1,自引:0,他引:1  
以Landsat TM和ETM+遥感影像为基础数据源,应用地理信息系统技术,对黄河宁蒙段所处流域1990-2010年土地利用变化进行了监测,并结合气候变化、人类活动和政策因素探讨了土地利用变化的驱动力,初步分析了土地利用/覆被变化对流域水-沙关系的影响。结果表明:(1)20年来研究区建设用地面积增加了1 310.04 km2,耕地面积增加了611.15 km2,水域和草地面积分别减少了1 499.51 km2和474.93 km2;(2)20年来黄河宁蒙段所处流域土地利用变化速度经历了缓慢变化-显著变化-急剧变化的过程。各土地利用类型在后10 年(2000-2010年)的变化速度均比前10年(1990-2000年)大;(3)研究时段内草地和未利用地转化为林地,草地和耕地被开发为建设用地,未利用地和草地被开垦为耕地;(4)人类活动和政策因素是影响20年来土地利用变化的主要驱动因子,但人口数量的增加、经济的发展及环境政策的调整对研究区土地利用变化的影响更为显著;(5)1990-2010年流域耕地和林地面积分别增加了611.15 km2和543.19 km2,植被覆盖度由1990年的34.7%增加到2010年的40.8%。林地和耕地面积的增加均使得流域总蒸发量增加,灌溉用水增加,从而径流量减少,植被覆盖度的增加使得流域径流量和输沙量均降低。  相似文献   

18.
Mangrove forests provide vital ecosystem services for millions of people living in coastal communities. The expansion of aquaculture production and urbanization have been identified as major causes of mangrove clearance in South-East Asia. The Ca Mau peninsula in Vietnam is leading the country in shrimp aquaculture and at the same time, the region is home to the largest remaining mangrove forests. This study aims to assess the spatial and temporal mangrove forest dynamics in Ngoc Hien district in Ca Mau. Land cover change and fragmentation are quantified using remote sensing imagery consisting of a series of SPOT5 scenes from 2004, 2009 and 2013. The results indicate a high turnover of land cover change, with close to half of the mangrove forests being affected by land cover changes between 2004 and 2014. Net changes in mangrove forest are found to average −0.34% annually, characterized by deforestation between 2004 and 2009 and afforestation of between 2009 and 2013. Fragmentation remains a plausible threat; approximately 35.4% of the mangrove forests in Ngoc Hien are part of interior ‘core’ forests. Forest zones with different regulation regimes play a significant role in shaping the geographic distribution of mangrove forest changes. The insights into recent mangrove forest dynamics facilitate the informed discussion on improving future protection of the mangrove forests abiding anthropogenic pressures.  相似文献   

19.
In spite of widely documented studies of deforestation rates and land use/cover changes in tropical dry forests in Mexico, relatively little is known about fragmentation patterns in such forests. This study defines the spatial distribution of landforms and land use/cover types the lower Papagayo River basin and examines their influence on fragmentation patterns and biological diversity in a tropical dry forest in that southern Pacific region. The land use/cover map was constructed from aerial photographs, Landsat TM imagery (2000) and fieldwork. Landform units were defined based on altitude, slope, lithology and morphology. Landscape fragmentation parameters were obtained using FRAGSTATS (version 3.3) considering the numbers of patches, mean, minimum and maximum patch size, edge density, total edge and connectivity. Results show tropical dry forest to be remnant vegetation (~11 per cent), characterized by isolation and low connectivity. Land use/cover types have different effects on fragmentation patterns. Agriculture and cattle raising produce similar numbers of patches, but with a different mean size; and human settlements have a scattered distribution pattern. The abandonment of rural agricultural livelihoods has favoured the expansion of secondary tropical dry forest characterized by continuity and high connectivity, which suggests a high regeneration potential from land abandonment. It can be concluded that tropical dry forest fragmentation and recovery at regional scales depend on such landscape attributes as lithology, slope, geomorphology and management.  相似文献   

20.
The extent of tropical deforestation is now being tracked by actors in the nongovernmental, academic, private and government sectors using several different sources of satellite imagery. This paper presents an overview of the satellite systems that can be used for operational forest monitoring in the tropics and examines some recent trends in their use. It also reviews various satellite-based studies to map moist tropical forests and draws upon lessons learned from land cover mapping projects in several countries and regions. The case of Indonesia, examined as a nation undergoing rapid conversion of forest to other land uses, is contrasted with Brazil where satellite-based deforestation monitoring is fully operational. In Indonesia, the paper argues, the creation of a national monitoring system for tropical forest conversion is needed to create a source of transparent, reliable information on forest cover and condition. Such a system is likely to succeed if based on multitemporal, moderate-resolution optical data such as imagery provided by MODIS (Moderate Resolution Imaging Spectrometer). When MODIS images are complemented by radar and fine-resolution imagery from sensors such as IKONOS and QuickBird, areas of abrupt change can be identified and the causes potentially discerned. Thus, satellite imagery at multiple temporal and spatial resolutions can effectively increase transparency in the forestry sector by revealing the rate and extent of deforestation on an annual basis and identifying potential areas of illegal logging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号