首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We analysed photosynthetic pigments in annually laminated sediment of meromictic Lake La Cruz, Spain, to cope with the timing and characterisation of primary productivity changes over the last four centuries. The photosynthetic pigments identified included chlorophyll a and b (and its derivatives) and specific carotenoids of different algal groups, such as zeaxanthin, lutein, alloxanthin, diadinoxanthin and diatoxanthin among others. Marker pigments of phototrophic sulfur bacteria were also observed, including bacteriochlorophyll a derivatives, homologue series of bacteriophaeophytins d and bacterial carotenoids okenone and chlorobactene. We investigated the diagenetic processes of pigment alteration in anoxic sediments and the possible implications for paleoproductivity reconstruction and interpretation. The lack of systematic down-core changes in diagenetic indicators suggests that variability of sedimentary pigment concentrations is the result of changes in lake productivity. The lower concentration of algal photosynthetic pigments in the bottom of sediment sequence corresponds to the onset of meromictic conditions. Before that, sediment was not continuously anoxic and the preservation of pigments was reduced. Regarding photosynthetic bacteria, green sulfur bacteria derivatives indicate that population growth was limited until the settled organic matter was sufficient to provide enough sulphide. Moreover, the presence of bacterioviridine, an oxidised derivative of bacteriochlorophyll a, suggest the competitive relation among photosynthetic bacteria. The high relative abundance of zeaxanthin indicates the dominance of picocyanobacteria in the primary productivity over the last centuries. Fluctuations of the pigment signal observed in the sediment sequence during the meromictic period were well correlated with fluctuations of solar activity.  相似文献   

2.
Reaumuria soongorica is a short woody shrub widely found in semi-arid areas of China. It can survive severe environ- mental stress including high salinity in its natural habitat. Thus, we investigated the involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of R. soongorica to saline environments. R. soon- gorica was treated with 0, 100, 200 and 400 mM NaC1 solutions for 14 days. Soil salt content increased significantly by watering with high content of NaC1 solution, and no variation between 8 and 14 days during treatment. The levels ofpe- roxidation of lipid membranes (measured by malondialdehyde content) and the activities of three antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX)) increased under salt stress. Chlorophyll and carotenoid content decreased with increasing salt content. The ratio of Chl a/Chl b and carotenoid/Chl exhibited sig- nificant increase under 400 mM NaC1. However, total flavonoid and anthocyanin contents and key enzyme activities in the flavonoid pathway including phenylalanine ammonialyase (PAL) and Chalcone isomerase (CHI) decreased under salt stress. These findings possibly suggest that R. soongorica has an adaptation protection mechanism against salt-induced oxidative damage by inducin~ the activity of antioxidant enzymes and maintaining a steady level of carotenoid/Chl.  相似文献   

3.
Cultural eutrophication of lakes occurring over the last 100 years is well known. Less well known is the eutrophication of lakes in earlier, late Quaternary time due to human and other causes. The recent and earlier trophic changes are documented in the sedimentary record by several groups of parameters. Among the most revealing of these are the diverse carotenoid pigments that originate from phytoplankton, photosynthetic bacteria, and other biota. The interpretation of the carotenoids in ancient sediments is facilitated by the study of carotenoids in recent sediments from lakes with relevant limnological and historical information. I support these contentions with evidence from several Swiss lakes, with emphasis on the late Quaternary development of Pfaffikersee and Soppensee.This is the eighth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

4.
We analyzed photosynthetic pigments, total organic carbon (TOC), biogenic silica, and Mo, a redox-sensitive element, in 210Pb-dated sediment cores to reconstruct the historical changes in primary productivity and anoxia in the central basin of Lake Hamana, a brackish lake in Shizuoka Prefecture, Japan, over the last 250 years. The algal photosynthetic pigments we analyzed included chlorophyll a (and its derivatives), chlorophyll b (and its derivatives), and carotenoids such as -carotene, lutein, zeaxanthin, diatoxanthin, fucoxanthin, alloxanthin, and -carotene. Marker pigments for phototrophic sulfur bacteria were also recorded, including okenone and bacteriopheophytin a, originating from Chromatium (a genus of purple sulfur bacteria), and isorenieratene and bacteriochlorophylls e 1, e 2 and e 3 (and corresponding bacteriopheophytins) from brown Chlorobium (a brown-colored group of green sulfur bacteria). The occurrence of these pigments throughout the length of all cores indicates that the anoxia in Lake Hamana has existed over at least the last 250 years. The indicators related to primary productivity – TOC and pigments of aerobic and anaerobic phototrophs – and an indicator of anoxia, Mo, increased after 1860, indicating that productivity had increased in both the oxic and anoxic (sulfidic) zones. The depth profiles of the indicators in the sediment cores showed that among phototrophic sulfur bacteria, Chromatium preferentially increased relative to brown Chlorobium when the lake productivity was high, and hence high anoxia existed in the lake. This can be explained by a shallowing of the oxic/anoxic boundary zone due to changes in temporal and/or spatial extents of seasonal anoxia, which made the light intensity in the upper anoxic zone high enough for Chromatium to grow. The upper Chromatium layer may absorb the wavelengths of light that favor the growth of brown Chlorobium in the water column, resulting in a relative decrease in brown Chlorobium. During the 1950s, the trends among the indicators changed significantly. This change is attributed to the construction of training walls, built to direct tidal currents into the lake, on the Imagire-guchi Channel, the sole inlet of seawater to the lake, during 1954–1956, and the resultant increases of seawater intrusion and lake salinity. A decrease in okenone and bacteriopheophytin a, or in okenone/isorenieratene ratio, after 1960 accompanying a decrease in Mo, is attributed to a deepening of the anoxic zone, where the light intensity became too low for growth of Chromatium, more light-demanding than the brown Chlorobium. A decrease of zeaxanthin (cyanobacteria) after 1960 relative to lutein (green algae) and diatoxanthin (diatoms and dinoflagellates) indicated a change in algal assemblage, presumably due to the increased salinity. Principal component analysis with a data set of total algal carotenoids, okenone, isorenieratene, and Mo also suggested that a major change occurred around the 1950s.  相似文献   

5.
Accurate identification of fossil pigments is essential if they are to be used as biomarker compounds in palaeolimnological studies. In recent years High Performance Liquid Chromatography (HPLC) has greatly enhanced the efficiency with which fossil pigments can be characterised and quantified. Using HPLC, undegraded pigments are typically identified through retention times, absorbance spectra and co-chromatography with authentic reference standards. However, lake sediments may also contain degraded pigments for which there are often no standards, and which may be difficult to identify using HPLC alone. In this study, we submitted HPLC fractions of fossil pigments and pigment derivatives collected from a meromictic lake in south west Tasmania, to a combination of Mass Spectrometry (MS) techniques including Electron Impact (EI) and static Liquid Secondary Ion MS (LSIMS) to identify their molecular ion characteristics and organic chemical composition. Mass Spectrometry permitted the detection of specific mass ions which were used to verify the identity of pigments and their derivatives. These included five carotenoids, chlorophyll a and derivatives, three previously described bacteriochlorophyll c derivatives with molecular weights of 770, 784, and 802, and two undescribed derivatives of bacteriochlorophyll c with molecular weights of 766 and 788. With these improved identifications we speculate on the pathways and modes of pigment degradation in the lake and asses the value of the degraded pigments as biomarkers. The use of MS permitted the identification of a greater number of signature pigments of algal and bacterial communities thus increasing the palaeolimnological value of the sediments. These methods are best applied in fossil pigment studies where there are a large number of unknown pigments and pigment degradation products, and where there are no authentic standards for co-chromatography. Practical suggestions for pigment MS are included in the discussion.  相似文献   

6.
Reverse-phase thin layer chromatography was used to quantify algal carotenoid degradation resulting from grazing by Daphnia magna in suspensions of lyophilized Oscillatoria utermöhlii, O. limnetica, Anabaena flos-aquae and Synechococcus sp. Three samples were removed every 24 h from 0 h to 144 h and the carotenoid, carbon and nitrogen content of the remaining algal-fecal mixture was determined. Grazing by Daphnia reduced carotenoid concentrations by 30%–80% after 144 h, with myxoxanthophyll being the most labile pigment in experiments with filamentous cyanophytes. However, as a group, the carotenoids were more resistant to the combined effects of grazing by Daphnia and bacterial action than were particulate algal carbon (78% to 82% lost by 144 h) or nitrogen (86%–90%) during the period in which easily digestible material remained. The maximal extent of carotenoid enrichment relative to particulate carbon ranged from 150% to 300% of initial pigment concentrations but declined with repeated coprophagy. On the basis of these results and published pigment budgets, we conclude both that fecal transportation of pigments may be an important determinant of carotenoid accumulation rates and that carotenoid stratigraphies should record predator-mediated changes in zooplankton community structure, especially in oligotrophic conditions.  相似文献   

7.
Experimental determination of carotenoid degradation   总被引:1,自引:0,他引:1  
  相似文献   

8.
The quality and interpretability of the paleobiological record depends on the preservation of morphological and geochemical fossils. Siliceous microfossils and sedimentary pigments are often cornerstones in paleoecology, although the microbial and geochemical processes conducive to their preservation remain poorly constrained. We examined sediments from an alpine lake in Banff National Park (Alberta, Canada) where diatom frustules are completely dissolved within 50 years of deposition. Diatom dissolution, silica recycling, and diagenetic alteration of algal pigments were investigated, in conjunction with porewater geochemistry and microelectrode profiling of the sediment–water interface. Analysis of sediment trap material showed ~90% of biogenic silica (BSi) production is lost prior to burial. Silica flux calculations, based on dissolved silica (as H4SiO4) in pore-waters, show a further ~6% of total BSi is returned to the water column from the upper 4 cm of sediments, implying that only ~4% of total BSi is permanently archived in sediments. In situ sediment pH and O2 profiles reveal that aerobic respiration by bacteria fully consumes oxygen by a depth of 4 mm into the sediment, with associated strong pH and redox gradients. During sedimentation and early diagenesis, diatoms undergo loss of extracellular polymeric substances that coat their frustules, promoting silica dissolution and leading to the loss of the microfossil record by a depth of 3.25 cm. Sedimentary pigments similarly undergo rapid degradation, but diatom-related carotenoids persist below the depth of silica dissolution. This work provides new insights on diagenetic processes in lakes, with broad implications for the interpretation of sedimentary proxies for algal production.  相似文献   

9.
Three-week old soybean (Glycine max) plants were subjected to a factorial combination of four regimes of soil matric water potential (ψm=−0·03, −0·5, −1·0 and −1·5 MPa), two levels of supplementary Zn (O and 20 mgl−1) and two levels of foliar IAA application (O and 10 mgl−1). Under control conditions (no Zn, no IAA), increasing soil drying progressively retarded shoot and root growth (length and dry mass production), reduced leaf relative water content (RWC) and decreased the contents of chlorophyll (Chl) and shoot soluble sugars (SS), but increased soluble sugar content of roots and lowered osmotic water potential of shoots and roots (osmotic adjustment). Total free amino acid (TAA) content increased in shoots but decreased in roots whereas contents of soluble proteins (SP) decreased in shoots and roots. The effect of water stress was statistically significant (p<0·05) and had a major effect (as indicated by η2values) on leaf RWC, shoot and root dry masses and osmotic potential. Supplementary Zn improved root growth at all levels of stress and shoot growth under severe stress. Improvement of growth was positively correlated with the internal tissue Zn concentrations (r=0·91 and 0·86 for shoot and 0·94 and 0·82 for root length and dry mass respectively). Exogenous IAA raised (p<0·05) RWC, Chl, DM (slightly), root SS, and SP, whereas shoot TAA was lowered. Effects on root TAA and shoot SS were more complex: they were lowered at zero stress and raised under severe stress. IAA and Zn in combination had additive effects on Chl, growth and osmotic potential, but their combined effects on SP and TAA were more complex. It is concluded that the treatment of soybean plants grown under conditions of low soil water potentials and Zn deficiency with Zn and IAA solutions counteracted the deleterious effects of stress, especially at high stress levels, and helped stressed plants to grow successfully under these adverse unfavourable conditions.  相似文献   

10.
采用调制叶绿素荧光技术(脉冲-振幅-调制:Pulse-Amplitude-Modulation,简称为PAM技术)和荧光光谱两种技术研究不同光照下的两种北极微藻(北极异帽藻(Heterocapsa arctica)和红胞藻(Rhodomonas sp.)的荧光特性,发现(1)两种藻在三个不同光照水平下(5 000 lux、15 000 lux、25 000 lux)光合生理变化特征相似:随着光照强度增加,光量子产量越低,光合效率越低;在15 000 lux和25 000 lux两个较强光照条件下,最大光合电子传递速率(rETRmax)没有提高,且捕光能力下降;25 000 lux光照强度下,均处于胁迫状态,但对强光的耐受能力增强;(2)两种藻在15 000 lux条件下Chl a荧光强度最高,25 000 lux条件下的Chl a荧光强度都显著降低,受到不同程度的光损伤;类胡萝卜素和多甲藻素是维持北极异帽藻15 000 lux下种群生存的有效色素;藻胆素和Chl c则分别为维持红胞藻5 000 lux和15 000 lux条件下的种群的生存起了积极作用。  相似文献   

11.
This paper presents an improved method for the optical dating of Holocene sediments from a variety of geomorphic settings. We have measured the equivalent dose (De) in individual grains of quartz, using green laser light for optical stimulation, and have simulated the De distributions for multiple-grain ‘synthetic’ aliquots using the single-grain data. For 12 samples of known (independent) age, we show that application of a ‘minimum age model’ to the single-grain and ‘small’ (10-grain) aliquot De data provides the most accurate estimate of the burial dose for nine of the samples examined (3 aeolian, 5 fluvial, and 1 marine). The weighted mean De (as obtained using the ‘central age model’) gives rise to burial age overestimates of up to a factor of 10 for these nine samples, whether single grains, small aliquots, or ‘large’ (100-grain) aliquots are used. For the other three samples (two aeolian and one fluvial), application of either the minimum age model or the central age model to the single-grain, small aliquot, and large aliquot De data yields burial ages in accord with the independent age control. We infer that these three samples were well bleached at the time of deposition. These results show that heterogeneous bleaching of the optical dating signal is commonplace in nature, and that aeolian transport offers no guarantee that the sample will be well bleached at the time of deposition. We also show that grains sensitive to infrared (IR) stimulation can give rise to low De values, which will result in significant underestimation of the burial dose and, hence, of the age of deposition. We demonstrate that use of a modified single-aliquot regenerative-dose protocol incorporating IR stimulation prior to green light stimulation deals effectively with contamination by IR-sensitive grains. We conclude that application of the modified protocol to single grains or small aliquots of quartz, using the lowest De population to estimate the burial dose, is the best means of obtaining reliable ages for Holocene sediments from a wide range of depositional environments.  相似文献   

12.
The primary producer community of Lake Apopka, a large (125 km2), shallow (mean depth, 1.7 m), polymictic Florida lake, shifted from macrophyte dominance to phytoplankton dominance in the 1940s. Today, frequent wind resuspension of highly organic, unconsolidated sediments supports a meroplanktonic community that is predominantly diatoms, but during calm periods the algal community is dominated by planktonic cyanobacteria. Sedimentary algal pigments (chlorophyll derivatives and carotenoids) and chemical proxies for nutrient enrichment (polyphosphate, total phosphorus and biogenic silica) in three sediment cores were used to investigate historic changes in primary producers. Sediments were separated into three stratigraphic zones using multivariate statistical techniques. Stratigraphic zonation was established in each core although sediment deposition at one site was insufficient to adequately resolve temporal changes. These results show the importance of selecting suitable sites for paleolimnological studies. The oldest zone represents macrophyte-derived sediments, and the two overlying zones represent phytoplankton-derived sediments deposited since the 1940s. Algal pigments in the most recent sediment zone show little degradation, which might be due to the presence of viable meroplankton in the sediment. After the initial primary producer shift from macrophytes to phytoplankton, the lake experienced a short period of cyanobacterial dominance followed by a period of benthic diatom abundance before being replaced by the present algal community consisting of cyanobacteria and meroplanktonic diatoms. Chlorophyll derivatives and carotenoids were highly correlated with total phosphorus. Historic trends inferred from the data include algal and cyanobacterial productivity that increased with increased phosphorus loading. The study demonstrates that valid paleolimnological proxies for historic eutrophication are available in loosely consolidated sediments of shallow, subtropical lakes.  相似文献   

13.
Detailed depth profiles of photosynthetic pigments in a sediment core (G-12) collected at the BDP93 site, the Buguldeika saddle, of south Lake Baikal, along with depth profiles of total organic carbon (TOC) and biogenic silica, were studied to elucidate the temporal changes of phytoplankton assemblages in the lake during the past 28 kyr. In addition to the quantification of carotenoids by high-performance liquid chromatography with photodiode-array detection (HPLC-PDA), steryl chlorin esters (SCEs) were analyzed by HPLC-PDA, HPLC-mass spectrometry (LC-MS) and sterols in SCEs by gas chromatography–mass spectrometry (GC–MS) to enrich the taxonomical information on the phytoplankton composition. Allochthonous input of organic matter from the Selenga River resulted in the higher TOC contents in core G-12 than in a previously reported core (G-6) collected at another site from the southern basin. The poorer correlation in core G-12 than in G-6 between TOC and chlorophyll-a-originating pigments, which are indicative of autochthonous production, also indicated a significant allochthonous input at the site. The abundance of lutein among the carotenoids detected, and the good correlation of total chlorophyll a and b shows that green algae represented a significant portion of the phytoplankton, accompanying the diatoms at the G-12 site, after the last glacial period. The presence of cryptomonads and cyanobacteria were confirmed from marker carotenoids in the sediment core. GC–MS analysis of sterols in SCEs detected marker sterols of diatoms, green algae, chrysophytes and dinoflagellates. The depth profiles of the measured indicators gave consistent features for temporal changes in phytoplankton assemblage at the G-12 site of Lake Baikal after the last glacial maximum. Notably, the profile of a chrysophyte-specific sterol in SCEs was consistent with the reported distribution of chrysophyte cysts during the Holocene. The presence of phytoplankton, such as green algae, diatoms and chrysophytes, in Lake Baikal during the late last glacial period was indicated by the analysis of sterols in SCEs. Sedimentary carotenoids and sterols in SCEs were found to give complementary information about phytoplankton composition. These molecular indicators allow us to reconstruct past lake phytoplankton assemblages responding to environmental changes with a time resolution as high as age–depth relationship in sediments attainable at present.  相似文献   

14.
We determined hydrogen isotope ratios of modern lake-waters and individual lipids from surface sediments of 36 lakes in the eastern North America. The lakes selected lie on two transects (south–north transect from Florida to Ontario and east–west transect from Wisconsin to South Dakota) and encompass large temperature and moisture gradients, and a wide range of lake water δD values (>100‰). The study allows a rigorous test of the applicability of using δD values of sedimentary lipids as paleoclimatic and paleoenvironmental proxies. We examined a range of lipids including C17 n-alkane, straight chain fatty acids, phytol and sterols in both free extracts and ester-bound fractions in the solvent extracted sediments. Useful isotopic indicators are expected to show a linear correlation and constant fractionation factor between their δD values in surface sediments and modern lake water. Our results demonstrate that several lipid compounds, free and ester-bound palmitic acid (16:0), C17 n-alkane, and phytol are useful candidates for paleoclimate reconstructions, in addition to two sterols that have been suggested previously (. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditons. Geochim. Cosmochim. Acta 65: 213–222). Authigenic or biogenic carbonate in sediments is conventional material for paleoclimatic study using ocean and lake sediments. However, because majority of lake sediments do not contain suitable carbonate materials for isotopic study, hydrogen isotope ratios of these lipids provide invaluable new sources of paleoclimatic and paleoenvironmental information.  相似文献   

15.
The trophic status of lakes in New Zealand is, on average, low compared to more densely populated areas of the globe. Despite this, trends of eutrophication are currently widespread due to recent intensification in agriculture. In order to better identify baseline productivity and establish long-term trends in lake trophic status, diatom-based transfer functions for productivity-related parameters were developed. Water quality data and surface sediment diatom assemblages from 53 lakes across the North and South Islands of New Zealand were analysed to determine species responses to the principal environmental gradients in the data set. Repeat sampling of water chemistry over a 12-month period enabled examination of species responses to annual means as well as means calculated for stratified and mixed periods. Variables found to be most strongly correlated with diatom species distributions were chlorophyll a (Chl a), total phosphorus (TP), dissolved reactive phosphorus (DRP), ionic concentration (measured as electrical conductivity (EC)) and pH. These variables were used to develop diatom-based transfer functions using weighted averaging regression and calibration (simple, tolerance down-weighted and with partial least squares algorithm applied). Overall, models derived for stratified means were weaker than those using annual or isothermal means. For specific variables, the models derived for the isothermal mean of EC (WA-tol r2jack = 0.79; RMSEP = 0.15 log10 S cm–1),the annual mean of pH (WA r2jack = 0.72; RMSEP = 0.25 pH units) and the isothermal mean of Chl a (WA r2jack = 0.71; RMSEP = 0.18 log10 mg m–3 Chl a) performed best. The models derived for TP were weak in comparison (for the annual mean of TP: WA r2jack = 0.50; RMSEP = 0.24 log10 mg m–3 TP) and residuals on estimates for this model were correlated with several other water quality variables, suggesting confounding of species responses to TP concentrations. The model derived for the isothermal mean of DRP was relatively strong (WA-tol r2jack = 0.78; RMSEP = 0.17 log10 mg m–3 DRP); however, residual values for this model were also found to be strongly correlated with several other water quality variables. It is concluded that the poor performance of the TP and DRP transfer functions relative to that of the Chl a model reflects the coexistence of nitrogen and phosphorus limitation within the lakes in the data set. In spite of this, the suite of transfer functions developed from the training set is regarded as a valuable addition to palaeolimnological studies in NewZealand.  相似文献   

16.
In-stream macrophytes are typically abundant in nutrient-rich chalk streams during the spring and summer months and modify the in-stream environment by altering river flows and trapping sediments. We present results from an inter-disciplinary study of two river reaches in the River Frome catchment, Dorset (UK). The investigation focused on how Ranunculus (water crowfoot), the dominant submerged macrophyte in the study reaches, modified patterns of flow and sediment deposition. Measurements were taken on a monthly basis throughout 2003 to determine seasonal patterns in macrophyte cover, associated changes in the distributions of flow velocities and the character and amount of accumulated fine sediment within stands of Ranunculus.Maximum in-stream cover of macrophytes exceeded 70% at both sites. Flow velocities were less than 0.1 m s− 1 within the stands of Ranunculus and accelerated to 0.8 m s− 1 outside the stands. During the early stages of the growth of Ranunculus, fine sediment mostly accumulated within the upstream section of the plant but the area of fine sediment accumulation extended into the downstream trailing section of the plant later in the growing season. The fine sediment accumulations were dominated by sand (63–1000 μm) with silts and clays (0.37–63 μm) comprising < 10% by volume. The content of organic matter in the accumulated sediments varied within stands, between reaches and through the growing season with values ranging between 9 and 105 mg g− 1 dry weight. At the reach scale the two sites exhibited different growth forms of Ranunculus which created distinctive patterns of flow and fine sediment deposition.  相似文献   

17.
Sedimentation fluxes of photosynthetic pigments and their derivatives, focused on the anoxygenic bacteria populations, were determined in meromictic Lake La Cruz over a three-year period using sediment traps. Bacterial settling occurs in pulses in response to lake dynamics. Two main annual events affect particle settling in Lake La Cruz: (1) Following an event of massive calcium precipitation in summer that caused water whiting, a maximum flux of chlorophyll a and derivatives towards the sediment was registered. Although whiting is accompanied by massive phytoplankton biomass sinking, it was not followed by concomitant photosynthetic bacterial sinking. (2) In contrast, the disruption of the chemocline and the contact of bacterial populations with oxygenated waters during autumn overturn provoked a destruction of the sulfur bacterial plate, causing mass mortality, registered in the settling material as photosynthetic pigments and their derivatives from phototrophic bacteria. Among the bacteriochlorophyll a oxidation products, bacterioviridin (bvir) was detected in high relative abundance in the settled material collected by sediment traps. The much increased flux of bvir after thermal overturn, associated with mass mortality of the purple sulfur bacterium, Amoebobacter purpureus, confirms the suitability of this molecule as a useful paleoindicator of the degree of oxygen exposure experienced by the purple sulfur bacteria population.  相似文献   

18.
Limnological surveys show that fossil pigment concentration is an accurate predictor of algal production. However, experimental and mass flux studies indicate that >90% of pigment is degraded to colourless compounds before permanent burial. To reconcile these views, this paper reviews current literature on pigment degradation and proposes a hierarchical control model for pigment deposition and fossil abundance. Over the widest range of production, pigment deposition and fossil concentration are proportional to algal standing crop. However, within a narrower range, the actual concentration of pigment in sediments is regulated by photo- and chemical oxidation. Three phases of loss exist: rapid oxidation in the water column (T1/2=days); slower post-depositional loss in surface sediments (T1/2=years); and very slow loss of double bonds in deep sediments (T1/2=centuries). Despite losses during deposition, fossil and algal abundance remain correlated through time, so long as there is no change in basin morphometry, light penetration, stratification or deepwater oxygen content. At the finest scale, food-web processes can increase the preservation of pigments from edible algae by incorporating pigments into feces that sink rapidly and bypass water column losses. As a consequence of selective loss during deposition and initial burial, carotenoid relative abundance is an unreliable measure of phytoplankton community composition. Instead, absolute concentration — scaled to the historical maximum — should be used for fossil interpretations.  相似文献   

19.
Lake Baikal, an ancient pristine lake in Siberia, has accumulated sediment deposits that span 25 million years. These deposits have the potential to provide a long-term record of climate changes and their interaction with the ecology of the lake. In order to investigate whether sedimentary phytoplankton pigments could be used to reconstruct past changes in total phytoplankton abundance and productivity, we compared the spatial variability in sedimentary pigment distributions in Holocene cores from three separate regions of the lake; Vidrino in the south, Posolski on Selenga Delta and Continent Ridge in the north. Furthermore, we present the first continuous sedimentary pigment and organic carbon sequence of the Kazantsevo interglacial (roughly a time equivalent to the European Eemian, and Marine Isotopic Stage MIS5e) at a resolution of approximately 150 years. Results of the spatial study showed marked differences in the sediment pigment deposition. Lowest chlorophyll a plus its degradation products versus organic carbon ratios (Chlas/TOC) indicating lowest production, but highest variability with time (indicating strongest climatic oscillations) were found at Continent Ridge. The study of sedimentary pigments deposited during the last two interglacial periods at Continent Ridge showed Chlas/TOC ratios 50–1000 times higher during the Kazantsevo Interglacial compared to the glacial periods, whereas the TOC content was only five times higher, thus indicating the significance of the Chlas/TOC ratio for the reconstruction of the phytoplankton abundance and productivity. Strong oscillations occurred during the Kazantsevo Interglacial within centennial time scales. Chlorophyllb plus its degradation products provided additional information on the past development of Chlorophyceae. Highest Chlas/TOC ratios were found during the early Holocene at approximately 9 kyr BP. Indications of short phytoplankton production maxima were also found during the late Atlantic (6 kyr BP) and at the Subboreal/Subatlantic transition (3 kyr BP). From this we conclude that sedimentary chlorophyll a is a reliable indicator of phytoplanktonic response to climate changes and may serve for␣validation of future climate scenarios in continental regions.  相似文献   

20.
Physicochemical, mineralogical, and geochemical characteristics of 279 highly calcareous lacustrine sediment samples obtained from a 30 m drilling core in the western part of the Great Konya Basin, Turkey were studied. The sediments have a predominance of silt and clay fractions with a median diameter of 3–5 μm. Vertical changes of the amounts of water soluble components, gypsum, carbonates, and non-salt minerals such as quartz, feldspars, and layer silicates in the sediments suggest that there were climatic changes in the Konya Basin. The dominant clay mineral is smectite followed by kaolinite, illite, and palygorskite. The oxygen isotopic (δ18O) ratios of six quartz samples from the Konya sediments, a terra rossa soil beside Lake Bey ehir gölü and paleosols at the foot of Mt. Erciyes Da ranged from +18.1 to +20.6‰. The dominant clay minerals and δ18O ratios suggest that part of quartz and coexisting layer silicates is of long-range transported and/or local aeolian dust origin from arid and semi-arid regions such as North Africa, Israel, and the surroundings. The relatively high deposition rate might be due to aeolian dust input and/or the sediment input introduced by the rivers such as the Çar amba river from the Toros (Taurus) mountains. The vertical distributions of electro-conductivity, amounts of water soluble and non-salt components, and the gypsum content of the sediments suggest that gypsum-rich layers were formed under shallow, saline waters, possibly associated with warm to hot and dry environments such as the Last Interglacial epoch and the Early Holocene. The sediments characterized by relatively high amounts of non-salt sediments, in which gypsum did not accumulate, could be deeper water phases formed under the cold and/or wet environments such as the Glacial epochs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号