首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高寒草甸是青藏高原主要的草地类型之一。为了解高寒草甸坡面土壤侵蚀特征,以兴海盆地高寒草甸坡面为研究区,分析了高寒草甸坡面上 137Cs和 210Pbex的分布特征;利用 137Cs和 210Pbex示踪方法,通过转换模型估算了高寒草甸坡面土壤侵蚀速率,并对两种方法估算的结果进行了对比。结果表明:(1)选取的高寒草甸背景土壤剖面上 137Cs质量活度最大值分布在 2~4 cm层位, 210Pbex质量活度最大值出现在最表层。(2)研究区坡面 137Cs和 210Pbex质量活度和通量在不同的坡位有明显的差异。(3)根据 210Pbex估算的土壤侵蚀速率高于基于 137Cs估算的土壤侵蚀速率,表明研究区近几十年土壤侵蚀可能呈增加趋势。(4)根据 137Cs和 210Pbex估算的土壤侵蚀速率具有极显著的正相关关系( r = 0.94,P <  相似文献   

2.
运用137Cs示踪技术,采用相关土壤侵蚀定量估算模型,探讨丹江口市小流域不同土地利用方式和土壤类型的土壤侵蚀状况.结果表明:研究区137Cs本底值为2 153.46 Bq/m2;耕作土剖面中137Cs呈均一分布,非耕作土剖面中137Cs呈指数递减分布;不同土地利用方式下农用地土壤侵蚀速率从大到小依次为沟谷旱地坡耕地菜田水田草地;不同土壤类型结合不同地貌形态呈现不同的侵蚀速率,依次为低山丘陵区的石灰土粘质的黄棕壤土紫色土和砂质潮土;坡耕地的土壤侵蚀呈现垂直分异特征.  相似文献   

3.
137Cs示踪法研究青藏高原草甸土的土壤侵蚀   总被引:5,自引:0,他引:5  
运用137Cs示踪法对青藏高原高寒草甸典型的两个小流域的土壤侵蚀进行了研究,结果表明:高寒草甸植被区的土壤137Cs在土壤剖面中呈指数型分布,分布深度一般在20cm左右;坡顶部由于风蚀、冻融侵蚀和水蚀较强,致使侵蚀强于下部,除坡顶部外其他坡位侵蚀强度都符合坡上部<坡中部<坡下部的规律;高寒草甸植被覆盖度与土壤侵蚀强度呈显著的负相关关系(p<0.01),土壤平均侵蚀模数随植被覆盖度的增加呈线性降低的趋势,相关系数R2达到0.997以上。高寒草甸退化程度越高,土壤侵蚀越强。退化较强的草甸区的平均侵蚀模数是退化较弱区的2.23倍,最大侵蚀模数可达2960.22t/(km2.a)。  相似文献   

4.
有关湖泊沉积137Cs深度分布资料解译的探讨   总被引:18,自引:0,他引:18  
张信宝 《山地学报》2005,23(3):294-299
讨论了国内有关湖泊沉积^137Cs断代资料解译的一些问题。一些高寒地区的湖泊,上世纪60年代主核爆期以后,入湖泥沙的^137Cs含量变化不大,因此沉积剖面^137Cs浓度达峰值后无明显降低趋势。一些浅水湖泊,由于人类活动扰动湖底表层泥沙,剖面表层泥沙的^137Cs浓度比较均一。根据核尘埃沉降监测资料,中国湖泊沉积应存在明显的1963年^137Cs蓄积峰,不应存在所谓的1974年^137Cs次蓄积峰,可能存在不很明显的1986年次蓄积峰。沉积剖面中^137Cs浓度的深度变化,不仅和”’CS大气沉降通量变化有关,也和流域内近几十年来的环境变化有关,1963年以后的^137Cs次蓄积峰的确定要慎重。黔中红枫湖沉积物^137Cs面积活度高于滇西湖泊,主要是由于石漠化严重的喀斯特山地,裸岩面积大,裸岩坡地几无土壤吸附^137Cs尘埃,核爆期间^137Cs降尘随降雨径流直接流失进入湖泊比例高的缘故,不是青藏高原的大气污染物散落屏蔽效应的结果。  相似文献   

5.
黑土侵蚀速率及其对土壤质量的影响   总被引:35,自引:3,他引:32  
阎百兴  汤洁 《地理研究》2005,24(4):499-506
利用137Cs示踪法,研究了东北黑土耕作土壤的流失厚度和速率,探讨了水土流失对土壤机械组成、有机质、土壤水分、容重及其N、P含量的影响。结果表明:研究区侵蚀坡面137Cs的分布深度在0~25cm,137Cs的活度在1246.05±85.90~1499.45±101.73Bq/m2,侵蚀厚度可达0.316~0.433mm/a,侵蚀强度3033.6~3940.3t/km2·a,已属于中度侵蚀水平。水土流失造成土壤质地粗化,从坡顶向坡底,耕层土壤有机质增加、容重变化不大,含水量增加,土壤养分的“贫化”现象明显。  相似文献   

6.
基于遥感和137Cs方法的半干旱草原区土壤侵蚀量估算   总被引:2,自引:0,他引:2  
结合遥感地学分析方法和地球化学放射性同位素——137Cs示踪技术对青藏高原东北部共和盆地塔拉滩草原地区的土壤风蚀量进行估算。利用遥感数据获取研究区土壤侵蚀强度相对等级图斑,在不同等级侵蚀空间信息中选取137Cs样品采集点,并测定土壤样品中的137Cs含量,以此确定不同等级侵蚀类型的土壤侵蚀量。结果表明,在本研究区发生的风力侵蚀强度不大,主要属于微度侵蚀和轻度侵蚀类型,分别占研究区总面积的47.12%和35.58%,二者占研究区总面积的82.70%,侵蚀模数介于220.28~580.13 t·km-2·a-1之间;只有极小区域发生了强烈以上侵蚀,面积为22.14 km2。在本区还发生强烈的堆积过程,出现大面积的风沙堆积区域,面积约322.67 km2,占研究区总面积的11.78%。本区年均土壤总侵蚀量约为87~115万t,总堆积量约为55~78万t,平均每年由塔拉滩向龙羊峡水库输入的土壤量约为32~37万t。此方法可以对干旱环境中土壤风力侵蚀进行快速的较为客观的估算,具有一定的应用前景。  相似文献   

7.
喀斯特地区下垫面的特殊复杂性使得地表发生显著坡面径流需要达到更大的降水累积阈值,碳酸盐岩岩石成土速率的缓慢和空间异质性导致喀斯特地区的土壤存量被严重高估和均一化等,因此,传统经典的土壤侵蚀模型在喀斯特地区难以适用。本文依据喀斯特关键带岩性的差异,确定其有效降水侵蚀阈值,并对降雨侵蚀力进行重新测算;根据碳酸盐岩化学成分的差异,计算其成土速率并作为土壤允许流失量;通过地貌—水文分析法提取喀斯特洼地空间分布信息,对喀斯特关键带土壤侵蚀算法进行多次改进和创新。结果显示:① 传统算法忽视了喀斯特关键带下垫面的特殊性,致使其平均降雨侵蚀力被高估47.35%,且喀斯特区域的平均降雨侵蚀力仅相当于非喀斯特区域的59.91%;② 传统算法可能将一些无土或少土可流区计算为土壤的高侵蚀量区,而连续性碳酸盐岩、碳酸盐岩夹碎屑岩、碳酸盐岩与碎屑岩互层的土壤允许流失量仅分别为0.21 t ha-1 yr-1、1.2 t ha-1 yr-1、2.89 t ha-1 yr-1;③ 传统算法通常将有坡度和耕作的洼地视为土壤侵蚀的高发区,但其实际应是地表侵蚀的沉积区,喀斯特洼地在空间上的连续性与碳酸盐岩的分布区基本重合;④ 传统算法高估土壤侵蚀面积27.79%,土壤侵蚀量47.72%。总之,传统经典模型会大大高估喀斯特地区的土壤侵蚀量,因此,应该建立一种精确适用的模型。另外,由于喀斯特地区的成土速率慢而土层薄、总量少,土壤允许流失量远低于非喀斯特区域侵蚀标准,应制定适用于喀斯特地区的土壤侵蚀分类分级标准和风险评价方法。  相似文献   

8.
以位于陕北黄土丘陵区的羊圈沟流域为重点研究区,针对不同坡面类型(坡长、坡形、坡度)和植被组合进行野外土壤采样,利用137Cs元素示踪方法评估坡面的土壤侵蚀效应。研究发现:1坡面形态对土壤侵蚀具有重要影响。自坡顶至坡脚,"直-凹"组合的坡型一般具有相对较低的土壤侵蚀模数,整体上起到"汇"的作用;但"凹-直/凸"组合的坡型具有相对较高的土壤侵蚀模数,在土壤侵蚀方面起到"源"的作用;其他坡型,如直坡、凸坡、"直-凸"和复杂性坡型的土壤侵蚀模数介于两者之间。2坡面不同植被空间配置对土壤侵蚀的影响具有明显差异。研究发现,坡面植被组合(自坡顶至坡脚)为荒草地-果园、有林地-其他植被类型组合和荒草地-其他植被类型的坡面具有相对较低的土壤侵蚀模数,起到了一定"汇"的功能,但人为干扰较为强烈的景观坡面(无水土保持措施)具有相对较高的土壤侵蚀模数,整体上表现为土壤侵蚀的"源"区。  相似文献   

9.
岩溶坡地土壤侵蚀强度的137 Cs法研究   总被引:14,自引:0,他引:14  
在重庆南部南川市境内,按不同侵蚀强度取137Cs样品,用于研究岩溶坡地不同侵蚀程度的土壤侵蚀强度与特征。结果表明,林草地侵蚀速率变化范围49.3 t/(km2.a)~230.5 t/(km2.a),平均侵蚀速率112.5 t/(km2.a);缓坡耕地侵蚀速率变化范围190.3~1 138.4 t/(km2.a),平均565.5 t/(km2.a);陡坡耕地的侵蚀速率变化范围为452.0~3 759.4 t/(km2.a),平均2 264.8 t/(km2.a)。与黄土高原和紫色土区相比,岩溶区侵蚀速率较小。  相似文献   

10.
张燕  彭补拙  高翔  唐翔宇  杨浩 《地理科学》2002,22(3):336-341
以苏南低山丘陵区茶园土壤侵蚀与土壤质量改变为研究对象,并取自然状态的杂木林为参照,用^137Cs法估算土壤侵蚀速率;以土壤粗化度、土壤有机质含量及土壤含水量描述土壤质量;在绝对数值的基础上,用变化量探讨研究对象的变化方向与幅度。对比耕作土与非耕作土的土壤侵蚀与土壤质量改变及将它们结合起来研究表明,人类活动有可能加剧土壤侵蚀,加快土壤质地粗化;合理的农业措施虽可减缓土壤质量下降,但防治侵蚀方可治本。  相似文献   

11.
耕作侵蚀及其农业环境意义   总被引:12,自引:1,他引:11  
21世纪来临之际,耕作研究和耕作习惯将发生重大变化。这一革命性变化的驱动力是人们对耕作位移与耕作侵蚀及其农业持续性和环境保护的日益了解和认识。耕作位移是耕作活动造成的土壤移动。因受耕作工具的设计、操作、景观地形和土壤性质等因素的影响,耕作位移在景观内的变化导致净土壤重新分配,即耕作侵蚀。典型的民政部是耕作连续地导致土壤顺坡移动,造成土壤在坡上部严重流失,而在坡下部堆积,本文描述了耕作位移和耕作侵蚀  相似文献   

12.
紫色土坡地侵蚀产沙过程的~7Be法初探   总被引:1,自引:0,他引:1  
利用环境放射性核素示踪技术研究土壤侵蚀是传统土壤侵蚀监测技术的重要补充手段。宇宙成因核素7Be具有半衰期短和在表土分布浅等特点,能够用于指示短时间尺度的坡面侵蚀堆积过程。采用7Be技术与泥沙颗粒分析相结合,定量判读了模拟降雨下紫色土坡面侵蚀过程演变。结果表明,对于20°坡面,7Be法指示的坡面侵蚀方式转折点与侵蚀泥沙颗粒变化得到的结果基本一致。7Be在表征侵蚀过程演变时具有独特的优势,可以将坡面片蚀发育过程随降雨时间的变化明显地识别出来。这对防治坡面侵蚀,特别是细沟侵蚀的发生具有重要意义。  相似文献   

13.
山区小流域坡面和沟道侵蚀的数学模式探讨   总被引:2,自引:0,他引:2  
小流域土壤侵蚀预报和模拟一直是世界土壤侵蚀研究的前沿领域,其中,坡面侵蚀和沟道侵蚀的计算方法、侵蚀能力的不均匀问题以及泥沙在塘库河道的沉积问题是研究的关键.对此,重点从侵蚀机理和计算方法上进行探讨,提出考虑到坡面土壤抗侵蚀能力和塘库沉积作用的计算方法,研讨了影响流域侵蚀和泥沙输送的主要环节和关键影响因子,分析了流域土壤抗蚀能力的空间差异及其对模拟结果的影响,提出了小流域侵蚀泥沙数学模型的基本结构框架,为进一步完善现有侵蚀泥沙过程模型提供了新的计算方法.  相似文献   

14.
耕作侵蚀对不同坡度下紫色土侵蚀产沙的影响   总被引:1,自引:0,他引:1  
川中丘陵紫色土在长期耕作侵蚀与水蚀的交互作用下侵蚀严重,在不同地形条件下紫色土耕作侵蚀坡面在二者相互作用的内在机理,以及水力学特征随坡度的变化规律尚不明晰。本文选取四川盆地典型紫色土坡地土壤为研究对象,以10 m~2 土槽坡面坡顶裸露2 m~2母岩代表受耕作侵蚀严重的坡面(TE),以坡顶未发生母岩裸露作为对照坡面(CG),设计5种不同坡度(5°、10°、15°、20°和25°)坡面,在室内人工降雨大厅进行60 min强度为90 mm·h~(-1)的模拟降雨。试验结果表明:(1)当坡度从5°逐渐增加到25°时,TE坡面较CG坡面累计产沙量分别增加了 17.73%、49.91%、83.95%、57.70%、29.56%,在坡度为15°时增长比例最大。(2)TE和CG坡面平均流速和弗劳德数随着坡度增加而增加,阻力系数和雷诺数随着坡度增加而减小。与CG相比,TE坡面的流速、弗劳德数和雷诺数均显著增加,而阻力系数在10°~20°坡面显著减小。(3)在TE和CG坡面上,产沙速率和流速、弗劳德数均呈显著正相关关系,产沙速率和阻力系数呈显著负相关关系,产沙速率与雷诺数相关性不明显,拟合结果表明平均流速可以很好地预测坡面产沙速率和水力学变化趋势。研究显示不同坡度条件下耕作侵蚀均加剧了坡面水蚀的发生,15°可能是耕作-水复合侵蚀坡面产沙的临界坡度。本研究结果不仅丰富了耕作侵蚀对水蚀影响的理论,也为川中丘陵紫色土区土壤侵蚀防治提供了科学依据。  相似文献   

15.
长江上游水库群的开发和利用,导致上游入库泥沙的减少,坡面侵蚀产沙贡献增加,造成三峡水库入库泥沙沉积及其来源的变化;同时,大坝蓄水使干支流之间存在水流和物质能量的交换作用,缓慢的流速导致三峡水库支流富营养化现象较突出。所以,三峡水库入库泥沙的构成,库区干支流悬移质泥沙特征以及消落带泥沙沉积过程是迫切需要研究的问题。本文选择三峡库区中游忠县境内长江干流和一级支流汝溪河作为研究对象,采集雨季7—9月长江干流和支流汝溪河悬移质泥沙和汝溪河库湾消落带沉积泥沙剖面分层样品,并测试样品的颗粒组成和Cs-137活度。结果表明:7月份低水位时期,干流和支流悬移泥沙的中值粒径分别为12.81μm和18.87μm,且支流砂粒体积百分比较干流高,说明支流悬移泥沙比干流粗;~(137)Cs比活度分别为0.87和0.65 Bq/kg,均较低。而8月份和9月份,干流悬移泥沙颗粒粗细和7月份相当,而支流悬移泥沙的平均中值粒径仅为6.05μm,与干流悬移质泥沙相比偏细;~(137)Cs比活度分别为1.23和2.16 Bq/kg。可以发现无论是干流还是支流,~(137)Cs比活度变化均表现为8月份比7月份偏高,且8月份支流~(137)Cs比活度比干流偏高。这是因为7月份是暴雨导致的表下层侵蚀泥沙,泥沙颗粒较粗且~(137)Cs比活度较低;而8月份的悬移泥沙主要归结于频繁的中小雨引起的坡面表层侵蚀产沙,泥沙颗粒较细且富含~(137)Cs。对于支流典型泥沙沉积剖面的研究表明,从2008至今,汝溪河库湾消落带泥沙总淤积厚度在7 cm左右,中值粒径介于4.6~13.7μm之间,~(137)Cs比活度的范围为1.39~1.97 Bq/kg。根据~(137)Cs比活度结合河流输沙颗粒组成的旋回分层特征,可以大致区分出雨季和旱季的沉积泥沙,初步弄清支流消落带泥沙沉积过程。  相似文献   

16.
黄土丘陵区坡面形态和植被组合的土壤侵蚀效应研究   总被引:7,自引:0,他引:7  
陈利顶  贾福岩  汪亚峰 《地理科学》2015,35(9):1176-1182
以位于陕北黄土丘陵区的羊圈沟流域为重点研究区,针对不同坡面类型(坡长、坡形、坡度)和植被组合进行野外土壤采样,利用137Cs元素示踪方法评估坡面的土壤侵蚀效应。研究发现:① 坡面形态对土壤侵蚀具有重要影响。自坡顶至坡脚,“直-凹”组合的坡型一般具有相对较低的土壤侵蚀模数,整体上起到“汇”的作用;但“凹-直/凸”组合的坡型具有相对较高的土壤侵蚀模数,在土壤侵蚀方面起到“源”的作用;其他坡型,如直坡、凸坡、“直-凸”和复杂性坡型的土壤侵蚀模数介于两者之间。② 坡面不同植被空间配置对土壤侵蚀的影响具有明显差异。研究发现,坡面植被组合(自坡顶至坡脚)为荒草地-果园、有林地-其他植被类型组合和荒草地-其他植被类型的坡面具有相对较低的土壤侵蚀模数,起到了一定“汇”的功能,但人为干扰较为强烈的景观坡面(无水土保持措施)具有相对较高的土壤侵蚀模数,整体上表现为土壤侵蚀的“源”区。  相似文献   

17.
燕山土石山区降雨和下垫面条件对坡面侵蚀产沙的影响   总被引:1,自引:0,他引:1  
为了揭示燕山土石山区水土流失规律,基于坡面径流小区定位观测资料,对坡面尺度一定降雨和下垫面条件下土壤侵蚀产沙状况进行了分析,拟为区域水土流失防治提供参考。研究结果表明:平均降雨强度和产流降雨量是引起坡面土壤侵蚀的主要因素,降雨历时和坡面土壤侵蚀产沙量之间的相关性不明显;坡面径流小区的土壤侵蚀模数随着坡度的增加呈指数增大趋势,当坡度超过20.42°后坡面土壤侵蚀模数呈快速增加趋势;坡面径流小区的侵蚀模数随着坡长的增加呈先增大后减小的趋势,在坡长为22.26 m处达到最大值,说明该区域坡面侵蚀可能存在临界坡长,在22 m左右;坡面土壤侵蚀模数随着植被覆盖度的增加呈减小趋势,但是覆盖度为60%的草地和覆盖度为90%的草地的侵蚀模数差别不大,说明水土流失治理中存在着临界植被覆盖度;梯田、鱼鳞坑、水平阶等整地工程由于改变了下垫面条件,能够有效蓄水拦沙,减弱坡面土壤侵蚀。  相似文献   

18.
运用20世纪五六十年代大气核试验所产生的人工放射性同位素 ̄(137)Cs为示踪元素,分析了陕西省子长县黄土峁玻耕地 ̄(137)Cs的坡面分布特征,计算出该坡耕地土壤侵蚀模数6380—8890t/[(km) ̄2·a];坡地底部剖面6和剖面14的土壤堆积速率分别为280和4230(t/[(km) ̄2·a];该坡地剖面线1和剖面线2方向上的泥沙输移比0.96。  相似文献   

19.
长江上游紫色土坡耕地土壤侵蚀~(137)Cs示踪法研究   总被引:9,自引:1,他引:9  
运用1 37Cs示踪法对长江上游“长治”水土保持工程重点治理区的云贵高原区、川中丘陵区和三峡库区 8块紫色土坡耕地土壤侵蚀速率研究结果表明 ,影响紫色土坡耕地平均侵蚀速率的主要因子为坡度、坡长、降雨量和土壤粒度组成 ,四个研究区土壤平均侵蚀速率介于 75 8t km2 ·a- 1 ~ 985 4t km2 ·a- 1 ,计算值与长江上游类似地区径流试验场观测值基本一致。  相似文献   

20.
通过对本底值样点和坡面采样点7Be的分布特征、格局与时间变化等进行分析,调查了雨季期间农作物生长覆盖变化条件下循坡农耕地与复垦休耕坡地2块样地土壤颗粒流失特征,初步分析了保护性耕作及农作物覆盖对土壤侵蚀的抑制作用。(1)在雨季前和雨季中期的7Be本底值剖面形态分布形态相似呈递减型变化,而且7Be分布特征反映了多场次降雨过程特征及其在土壤中迁移再分布的变化;循坡农耕地的7Be浓度分布相对较小而且变异小,复垦的休耕坡地的7Be浓度分布相对较高而且变异大,是由于土壤结构差异和锄耕扰动程度不同带来降雨渗透变化不同所致。(2)雨季开始的5月和8月坡地表土7Be含量都低于同期本底值样地的表土层7Be含量,说明锄耕和降雨过程明显地扰动了土壤颗粒的分布,土壤颗粒流失速率变化范围是在5. 31~9. 61 (kg/m2)。(3)土壤颗粒流失速率的对比是复垦休耕地大于循坡耕地。主要是耕种扰动增大了复垦休耕地土壤颗粒流失状况,而循坡耕地的保护性耕作和农作物覆盖对地表土壤有一定的防护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号